Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 26, 2009 - Issue 7
153
Views
9
CrossRef citations to date
0
Altmetric
Research Papers

THERMOCYCLIC AND PHOTOCYCLIC ENTRAINMENT OF CIRCADIAN LOCOMOTOR ACTIVITY RHYTHMS IN SLEEPY LIZARDS, TILIQUA RUGOSA

, &
Pages 1369-1388 | Received 02 Feb 2009, Accepted 12 Jun 2009, Published online: 16 Nov 2009

REFERENCES

  • Chiba A, Kikuchi M, Aoki K. (2003). Dissociation between the circadian rhythm of locomotor activity and the pineal clock in the Japanese newt. J. Comp. Physiol. A. 189: 655–659.
  • Dardente H, Cermakian N. (2007). Review: Molecular circadian rhythms in central and peripheral clocks in mammals. Chronobiol. Int. 24: 195–213.
  • Ebihara S, Uchiyama K, Oshima I. (1984). Circadian organisation in the pigeon, Columba livia: The role of the pineal organ and the eye. J. Comp. Physiol. A. 154: 59–69.
  • Ellis DJ, Firth BT, Belan I. (2006). Circadian rhythm of behavioral thermoregulation in the sleepy lizard (Tiliqua rugosa). Herpetologica 62: 259–265.
  • Ellis DJ, Firth BT, Belan I. (2007). Circadian rhythms of locomotor activity and temperature selection in sleepy lizards, Tiliqua rugosa. J. Comp. Physiol. A. 193: 695–701.
  • Ellis DJ, Firth BT, Belan I. (2008). Interseasonal variation in the circadian rhythms of locomotor activity and temperature selection in sleepy lizards, Tiliqua rugosa. J. Comp. Physiol. A. 194: 701–712.
  • Erkert HG, Rothmund E. (1981). Differences in temperature sensitivity of the circadian homeothermic and heterothermic neotropical bats. Comp. Biochem. Physiol. 68: 383–390.
  • Evans KJ. (1966). Responses of the locomotor activity rhythms of lizards to simultaneous light and temperature cycles. Comp. Biochem. Physiol. 19: 91–103.
  • Firth BT, Belan I. (1998). Daily and seasonal rhythms in selected body temperatures in the Australian lizard Tiliqua rugosa (Scincidae): Field and laboratory observations. Physiol. Zool. 71: 303–311.
  • Firth BT, Kennaway DJ. (1989). Thermoperiod and photoperiod interact to affect the phase of the plasma melatonin rhythm in the lizard Tiliqua rugosa. Neurosci. Lett. 106: 125–130.
  • Firth BT, Kennaway DJ, Belan I. (1991). Environmental factors regulating seasonal changes in melatonin secretion in the lizard. Tiliqua rugosa. Adv. Pineal Res. 5: 241–243.
  • Firth BT, Belan I, Kennaway DJ, Moyer RW. (1999). Thermocyclic entrainment of lizard blood plasma melatonin rhythms in constant and cyclic photic environments. Am. J. Physiol. 277: R1620–R1626.
  • Foà A, Bertolucci C. (2001). Temperature cycles induce a bimodal activity pattern in ruin lizards: Masking or clock-controlled event? A seasonal problem. J. Biol. Rhythms 16: 574–584.
  • Francis AJP, Coleman GJ. (1988). The effect of ambient temperature cycles upon circadian running and drinking activity in male and female laboratory rats. Physiol. Behav. 43: 471–477.
  • Francis AJP, Coleman GJ. (1990). Ambient temperature cycles entrain free-running circadian rhythms of the stripe-faced dunnart, Sminthopsis macroura. J. Comp. Physiol. 167: 357–362.
  • Glynn PW. (1988). El Nino-Southern Oscillation 1982–1983: Nearshore population, community and ecosystem responses. Ann. Rev. Ecol. Syst. 19: 309–345.
  • Graham TE, Hutchison VH. (1978). Locomotor activity in Chrysemys picta: Response to asynchronous cycles of temperature and photoperiod. Copeia 364–367. 1978
  • Hastings JW, Rusak B, Boulos Z. Prosser CL. ( ed). . (1991). Circadian rhythms: The physiology of biological timing. Neural and integrative animal physiology New York: Wiley-Liss, pp. 435–546.
  • Heckrotte C. (1962). The effect of the environmental factors in the locomotory activity of the plains garter snake (Thamnophis radix radix). Anim. Behav. 10: 193–207.
  • Heckrotte C. (1975). Temperature and light effects on the circadian rhythm and locomotor activity of the plains garter snake (Thamnophis radix radix). J. Interdiscipl. Cycle Res. 6: 279–290.
  • Herrero MJ, Madrid JA, Sanchez-Vazquez FJ. (2003). Entrainment to light of circadian activity rhythms in tench (Tinca tinca). Chronobiol. Int. 20: 1001–1017.
  • Hoffmann K. (1968). Synchronisation der circadianen Aktivitätsperiodik von Eidechsen durch Temperaturcyclen verschiedener Amplitude. Zeit. Vergl. Physiol. 58: 225–228.
  • Holm E. (1973). The influence of constant temperatures upon the circadian rhythm of the Namib desert dune lizard Aporosaura anchietae Bocage. Madoqua 2: 33–41.
  • Innocenti A, Foà A, Minutini L. (1993). The pineal and circadian rhythms of temperature selection and locomotion in lizards. Physiol. Behav. 53: 911–915.
  • Kerr GD, Bull CM, Cottrell GR. (2004). Use of an ‘onboard’ data logger to determine lizard activity patterns, body temperature and microhabitat use for extended periods in the field. Wildl. Res. 31: 171–176.
  • Lee JC. (1974). The diel activity cycle of the lizard. Xantusia henshawi. Copeia 1974:934–940.
  • Lindberg RG, Hayden P. (1974). Thermoperiodic entrainment of arousal from torpor in the little pocket mouse. Perognathus longimembris. Chronobiologia 1: 356–361.
  • Lopez-Olmeda JF, Madrid JA, Sanchez-Vazquez FJ. (2006). Light and temperature cycles as zeitgebers of zebrafish (Danio rerio) circadian activity rhythms. Chronobiol. Int. 23: 537–550.
  • Menaker M. (1968). Extraretinal light perception in the sparrow. I. Entrainment of the biological clock. Proc. Natl. Acad. Sci. USA 59: 414–421.
  • Menaker M. (1971). Rhythms, reproduction and photoreception. Biol. Reprod. 4: 295–308.
  • Pittendrigh CS. (1960). Circadian rhythms and the circadian organization of living sytems. Cold Spring Harb. Symp. Quant. Biol. 25: 159–184.
  • Pittendrigh CS. Aschoff J. ( ed). . (1965). On the mechanisms of the entrainment of a circadian rhythm by light cycles. Circadian clocks Amsterdam: North Holland Publishing Company, pp. 277–297.
  • Pittendrigh CS, Daan S. (1976). A functional analysis of circadian pacemakers in nocturnal rodents. I. The stability and lability of spontaneous frequency. J. Comp. Physiol. 106: 223–252.
  • Pohl HH. (1998). Temperature cycles as zeitgeber for the circadian clock of two burrowing rodents, the normothermic antelope ground squirrel and the heterothermic Syrian hamster. Biol. Rhythm Res. 29: 311–325.
  • Portaluppi F, Touitou Y, Smolensky MH. (2008). Ethical and methodological standards for laboratory and medical biological rhythm research. Chronobiol. Int. 25: 999–1016.
  • Rensing L, Ruoff P. (2002). Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases. Chronobiol. Int. 19: 807–864.
  • Rismiller PD, Heldmaier G. (1982). The effect of photoperiod on temperature selection in the European green lizard. Oecologia 53: 222–226.
  • Rismiller PD, Heldmaier G. (1988). How photoperiod influences body temperature selection in the lizard Lacerta viridis. Oecologia 75: 125–131.
  • Sokolove PG, Bushell WN. (1978). The chi-square periodogram: Its utility for analysis of circadian rhythms. J. Theor. Biol. 72: 131–160.
  • Sulzman FM, Fuller CA, Moore-Ede MC. (1977). Environmental synchronisers of squirrel monkey circadian rhythms. J. Appl. Physiol. 43: 795–800.
  • Tokura H, Aschoff J. (1983). Effects of temperature on the circadian rhythm of pig-tailed macaques Macaca nemestrina. Am. J. Physiol. 245: R800–R804.
  • Underwood H. Gans C, Crews D. ( eds). . (1992). Endogenous rhythms. Biology of the reptilia: Hormones, brain and behaviour Chicago: University of Chicago Press, pp. 229–297.
  • Underwood H, Harless M. (1985). Entrainment of the circadian activity rhythm of a lizard to melatonin injections. Physiol. Behav. 35: 265–270.
  • Wang G-Q, Du Y-Z, Tong J. (2007). Daily oscillation and photoresponses of clock gene, CLOCK, and clock-associated gene, Arylalkylamine N-Acetyltransferase gene transcriptions in the rat pineal gland. Chronobiol. Int. 24: 9–20.
  • Warburg MR. (1965). The influence of ambient temperature and humidity on the body temperature and water loss from two Australian lizards, Tiliqua rugosa Gray (Scincidae) and Amphibolurus barbatus Cuvier (Agamidae). Aust. J. Zool. 13: 331–350.
  • Zubidat AE, Ben-Sholmo R, Haim A. (2007). Thermoregulatory and endocrine responses to light pulses in short-day acclimated social voles (Microtus socialis). Chronobiol. Int. 24: 269–288.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.