Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 26, 2009 - Issue 7
273
Views
16
CrossRef citations to date
0
Altmetric
Research Papers

BLOCKING ENDOCYTOSIS IN DROSOPHILA'S CIRCADIAN PACEMAKER NEURONS INTERFERES WITH THE ENDOGENOUS CLOCK IN A PDF-DEPENDENT WAY

, &
Pages 1307-1322 | Received 13 Mar 2009, Accepted 22 Jun 2009, Published online: 16 Nov 2009

REFERENCES

  • Aton SJ, Colwell CS, Harmar AJ, Waschek J, Herzog ED. (2005). Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat. Neurosci. 8: 476–483.
  • Broughton SJ, Kitamoto T, Greenspan RJ. (2004). Excitatory and inhibitory switches for courtship in the brain of Drosophila melanogaster. Curr. Biol. 14: 538–547.
  • Chen MS, Obar RA, Schroeder CC, Austin TW, Poodry CA, Wadsworth SC, Vallee RB. (1991). Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis. Nature 351: 583–586.
  • Claing A, Laporte SA, Caron MG, Lefkowitz RJ. (2002). Endocytosis of G protein-coupled receptors: Roles of G protein-coupled receptor kinases and ß-arrestin proteins. Progr. Neurobiol. 66: 61–79.
  • Dircksen H, Zahnow CA, Gaus G, Keller R, Rao KR, Riehm JP. (1987). The ultrastructure of nerve endings containing pigment-dispersing hormone (PDH) in crustacean sinus glands: Identification by an antiserum against a synthetic PDH. Cell Tissue Res. 250: 377–387.
  • Dubnau J, Grady L, Kitamoto T, Tully T. (2001). Disruption of neurotransmission in Drosophila mushroom body blocks retrieval but not acquisition of memory. Nature 411: 476–480.
  • Gray NW, Fourgeaud L, Huang B, Chen J, Cao H, Oswald BJ, Hemar A, McNiven MA. (2003). Dynamin 3 is a component of the postsynapse, where it interacts with mGluR5 and Homer. Curr. Biol. 13: 510–515.
  • Grigliatti TA, Hall L, Rosenbluth R, Suzuki DT. (1973). Temperature-sensitive mutations in Drosophila melanogaster. XIV. A selection of immobile adults. Mol. Gen. Genet. 120: 107–114.
  • Grima B, Chelot E, Xia R, Rouyer F. (2004). Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature 431: 869–873.
  • Guha A, Sriram V, Krishnan KS, Mayor S. (2003). Shibire mutations reveal distinct dynamin-independent and -dependent endocytic pathways in primary cultures of Drosophila hemocytes. J. Cell Sci. 116: 3373–3386.
  • Helfrich-Förster C. (1995). The period clock gene is expressed in central nervous system neurons which also produce a neuropeptide that reveals the projections of circadian pacemaker cells within the brain of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 92: 612–616.
  • Helfrich-Förster C. (1998). Robust circadian rhythmicity of Drosophila melanogaster requires the presence of lateral neurons: A brain-behavioral study of disconnected mutants. J. Comp. Physiol. [A]. 182: 435–453.
  • Helfrich-Förster C, Tauber M, Park JH, Muhlig-Versen M, Schneuwly S, Hofbauer A. (2000). Ectopic expression of the neuropeptide pigment-dispersing factor alters behavioral rhythms in Drosophila melanogaster. J. Neurosci. 20: 3339–3353.
  • Helfrich-Förster C, Shafer OT, Wülbeck C, Grieshaber E, Rieger D, Taghert P. (2007). Development and morphology of the clock-gene-expressing lateral neurons of Drosophila melanogaster. J. Comp. Neurol. 500: 47–70.
  • Hyun S, Lee Y, Hong ST, Bang S, Paik D, Kang J, Shin J, Lee J, Jeon K, Hwang S, Bae E, Kim J. (2005). Drosophila GPCR Han is a receptor for the circadian clock neuropeptide PDF. Neuron 48: 267–278.
  • Ikeda K, Ozawa S, Hagiwara S. (1976). Synaptic transmission reversibly conditioned by single-gene mutation in Drosophila melanogaster. Nature 259: 489–491.
  • Isaac RE, Johnson EC, Audsley N, Shirras AD. (2007). Metabolic inactivation of the circadian transmitter, pigment dispersing factor (PDF), by neprilysin-like peptidases in Drosophila. J. Exp. Biol. 210: 4465–4470.
  • Johard HAD, Yoshii T, Dircksen H, Cusumano P, Rouyer F, Helfrich-Förster C, Nässel DR. (2009). Peptidergic clock neurons in Drosophila: Ion transport peptide and short neuropeptide F in subsets of dorsal and ventral lateral neurons. J. Comp. Neurol. 516: 59–73.
  • Jones SM, Howell KE, Henley JR, Cao H, McNiven MA. (1998). Role of dynamin in the formation of transport vesicles from the trans-Golgi network. Science 279: 573–577.
  • Kawasaki F, Hazen M, Ordway RW. (2000). Fast synaptic fatigue in shibire mutants reveals a rapid requirement for dynamin in synaptic vesicle membrane trafficking. Nat. Neurosci. 3: 859–860.
  • Kilman VL, Zhang L, Meissner R-A, Burg E, Allada R. (2009). Perturbing dynamin reveals potent effects on the Drosophila circadian clock. PLoS ONE 4:e5235
  • Kitamoto T. (2001). Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J. Neurobiol. 47: 81–92.
  • Kitamoto T. (2002a). Conditional disruption of synaptic transmission induces male-male courtship behavior in Drosophila. Proc. Natl. Acad. Sci. USA 99: 13232–13237.
  • Kitamoto T. (2002b). Targeted expression of temperature-sensitive dynamin to study neural mechanisms of complex behavior in Drosophila. J. Neurogenet. 16: 205–228.
  • Koenig JH, Ikeda K. (1989). Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J. Neurosci. 9: 3844–3860.
  • Koenig JH, Saito K, Ikeda K. (1983). Reversible control of synaptic transmission in a single gene mutant of Drosophila melanogaster. J. Cell Biol. 96: 1517–1522.
  • Koenig JH, Yamaoka K, Ikeda K. (1998). Omega images at the active zone may be endocytotic rather than exocytotic: Implications for the vesicle hypothesis of transmitter release. Proc. Natl. Acad. Sci. USA 95: 12677–12682.
  • Kosaka T, Ikeda K. (1983a). Possible temperature-dependent blockage of synaptic vesicle recycling induced by a single gene mutation in Drosophila. J. Neurobiol. 14: 207–225.
  • Kosaka T, Ikeda K. (1983b). Reversible blockage of membrane retrieval and endocytosis in the garland cell of the temperature-sensitive mutant of Drosophila melanogaster, shibirets1. J. Cell. Biol. 97: 499–507.
  • Langer I, Robberecht P. (2007). Molecular mechanisms involved in vasoactive intestinal peptide receptor activation and regulation: current knowledge, similarities to and differences from the A family of G-protein-coupled receptors. Biochem. Soc. Trans. 35: 724–728.
  • Lear BC, Merrill CE, Lin JM, Schroeder A, Zhang L, Allada R. (2005). A G protein-coupled receptor, groom-of-PDF, is required for PDF neuron action in circadian behavior. Neuron 48: 221–227.
  • Lin Y, Stormo GD, Taghert PH. (2004). The neuropeptide pigment-dispersing factor coordinates pacemaker interactions in the Drosophila circadian system. J. Neurosci. 24: 7951–7957.
  • Majercak J, Sidote D, Hardin PE, Edery I. (1999). How a circadian clock adapts to seasonal decreases in temperature and day length. Neuron 24: 219–230.
  • Masur SK, Kim YT, Wu CF. (1990). Reversible inhibition of endocytosis in cultured neurons from the Drosophila temperature-sensitive mutant shibirets1. J. Neurogenet. 6: 191–206.
  • McGuire SE, Le PT, Davis RL. (2001). The role of Drosophila mushroom body signaling in olfactory memory. Science 293: 1330–1333.
  • Mertens I, Vandingenen A, Johnson EC, Shafer OT, Li W, Trigg JS, De Loof A, Schoofs L, Taghert PH. (2005). PDF receptor signaling in Drosophila contributes to both circadian and geotactic behaviors. Neuron 48: 213–219.
  • Miskiewicz K, Pyza E, Schürmann F-W. (2004). Ultrastructural characteristics of circadian pacemaker neurones, immunoreactive to an antibody against a pigment-dispersing hormone in the fly's brain. Neurosci. Lett. 363: 73–77.
  • Murthy KS, Mahavadi S, Huang J, Zhou H, Sriwai W. (2008). Phosphorylation of GRK2 by PKA augments GRK2-mediated phosphorylation, internalization, and desensitization of VPAC2 receptors in smooth muscle. Am. J. Physiol. Cell Physiol. 294: C477–C487.
  • Parisky KM, Agosto J, Pulver SR, Shang Y, Kuklin E, Hodge JJ, Kang K, Liu X, Garrity PA, Rosbash M, Griffith LC. (2008). PDF cells are a GABA-responsive wake-promoting component of the Drosophila sleep circuit. Neuron 60: 672–682.
  • Park JH, Helfrich-Förster C, Lee G, Liu L, Rosbash M, Hall JC. (2000). Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proc. Natl. Acad. Sci. USA 97: 3608–3613.
  • Peng Y, Stoleru D, Levine JD, Hall JC, Rosbash M. (2003). Drosophila free-running rhythms require intercellular communication. PLoS Biol. 1: E13.
  • Petri B, Stengl M. (2001). Phase response curves of a molecular model oscillator: Implications for mutual coupling of paired oscillators. J. Biol. Rhythms 16: 125–141.
  • Portaluppi F, Touitou Y, Smolensky MH. (2008). Ethical and metholodological standards for laboratory and medical biological rhythm research. Chronobiol. Int. 25: 999–1016.
  • Renn SC, Park JH, Rosbash M, Hall JC, Taghert PH. (1999). A PDF neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 99: 791–802.
  • Rieger D, Fraunholz C, Popp J, Bichler D, Dittmann R, Helfrich-Förster C. (2007). The fruit fly Drosophila melanogaster favors dim light and times its activity peaks to early dawn and late dusk. J. Biol. Rhythms 22: 387–399.
  • Sakai T, Kitamoto T. (2006). Differential roles of two major brain structures, mushroom bodies and central complex, for Drosophila male courtship behavior. J. Neurobiol. 66: 821–834.
  • Shafer OT, Kim DJ, Dunbar-Yaffe R, Nikolaev VO, Lohse MJ, Taghert PH. (2008). Widespread receptivity to neuropeptide PDF throughout the neuronal circadian clock network of Drosophila revealed by real-time cyclic AMP imaging. Neuron 58: 223–237.
  • Shang Y, Griffith LC, Rosbash M. (2008). Light-arousal and circadian photoreception circuits intersect at the large PDF cells of the Drosophila brain. Proc. Natl. Acad. Sci. USA 105: 19587–19594.
  • Sheeba V, Fogle KJ, Kaneko M, Rashid S, Chou YT, Sharma VK, Holmes TC. (2008). Large ventral lateral neurons modulate arousal and sleep in Drosophila. Curr. Biol. 18: 1537–1545.
  • Siddiqi O, Benzer S. (1976). Neurophysiological defects in temperature-sensitive paralytic mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 73: 3253–3257.
  • Urrutia R, Henley JR, Cook T, McNiven MA. (1997). The dynamins: Redundant or distinct functions for an expanding family of related GTPases?. Proc. Natl. Acad. Sci. USA 94: 377–384.
  • van der Bliek AM. (1999). Functional diversity in the dynamin family. Trends Cell Biol. 9: 96–102.
  • van der Bliek AM, Meyerowitz EM. (1991). Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature 351: 411–414.
  • Waddell S, Armstrong JD, Kitamoto T, Kaiser K, Quinn WG. (2000). The amnesiac gene product is expressed in two neurons in the Drosophila brain that are critical for memory. Cell 103: 805–813.
  • Wülbeck C, Grieshaber E, Helfrich-Förster C. (2008). Pigment-dispersing factor (PDF) has different effects on Drosophila's circadian clocks in the accessory medulla and in the dorsal brain. J. Biol. Rhythms 23: 409–424.
  • Yang Z, Li H, Chai Z, Fullerton MJ, Cao Y, Toh BH, Funder JW, Liu JP. (2001). Dynamin II regulates hormone secretion in neuroendocrine cells. J. Biol. Chem. 276: 4251–4260.
  • Yoshii T, Wülbeck C, Sehadova H, Veleri S, Bichler D, Stanewsky R, Helfrich-Förster C. (2009). The neuropeptide Pigment-Dispersing Factor adjusts period and phase of Drosophila's clock. J. Neurosci. 29: 2597–2610.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.