Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 26, 2009 - Issue 8
1,237
Views
171
CrossRef citations to date
0
Altmetric
Review Paper

THE CROSSTALK BETWEEN PHYSIOLOGY AND CIRCADIAN CLOCK PROTEINS

&
Pages 1479-1513 | Received 20 Oct 2009, Accepted 13 Nov 2009, Published online: 23 Dec 2009

REFERENCES

  • Akashi M, Takumi T. (2005). The orphan nuclear receptor RORalpha regulates circadian transcription of the mammalian core-clock Bmal1. Nat. Struct. Mol. Biol. 12:441–448.
  • Akashi M, Tsuchiya Y, Yoshino T, Nishida E. (2002). Control of intracellular dynamics of mammalian period proteins by casein kinase I epsilon (CKIepsilon) and CKIdelta in cultured cells. Mol. Cell. Biol. 22:1693–1703.
  • Akashi M, Hayasaka N, Yamazaki S, Node K. (2008). Mitogen-activated protein kinase is a functional component of the autonomous circadian system in the suprachiasmatic nucleus. J. Neurosci. 28:4619–4623.
  • Akhtar RA, Reddy AB, Maywood ES, Clayton JD, King VM, Smith AG, Gant TW, Hastings MH, Kyriacou CP. (2002). Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr. Biol. 12:540–550.
  • Alenghat T, Meyers K, Mullican SE, Leitner K, Adeniji-Adele A, Avila J, Bucan M, Ahima RS, Kaestner KH, Lazar MA. (2008). Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic physiology. Nature 456:997–1000.
  • Allada R, Meissner RA. (2005). Casein kinase 2, circadian clocks, and the flight from mutagenic light. Mol. Cell. Biochem. 274:141–149.
  • Alvarez JD, Hansen A, Ord T, Bebas P, Chappell PE, Giebultowicz JM, Williams C, Moss S, Sehgal A. (2008). The circadian clock protein BMAL1 is necessary for fertility and proper testosterone production in mice. J. Biol. Rhythms 23:26–36.
  • Antoch MP, Kondratov RV, Takahashi JS. (2005). Circadian clock genes as modulators of sensitivity to genotoxic stress. Cell Cycle 4:901–907.
  • Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U. (2008). SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317–328.
  • Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schutz G, Schibler U. (2000). Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289:2344–2347.
  • Benito J, Zheng H, Ng FS, Hardin PE. (2007). Transcriptional feedback loop regulation, function, and ontogeny in Drosophila. Cold Spring Harb. Symp. Quant. Biol. 72:437–444.
  • Benoit G, Cooney A, Giguere V, Ingraham H, Lazar M, Muscat G, Perlmann T, Renaud JP, Schwabe J, Sladek F, Tsai MJ, Laudet V. (2006). International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol. Rev. 58:798–836.
  • Biggi D, Conway PM, Sartori S, Camanini P, Estryn-Behar M, Johanna BI, van der Heijden M., Costa G. (2008). Metabolic syndrome in permanent night workers. Chronobiol. Int. 25:443–454.
  • Borrelli E, Nestler EJ, Allis CD, Sassone-Corsi P. (2008). Decoding the epigenetic language of neuronal plasticity. Neuron 60:961–974.
  • Bray MS, Shaw CA, Moore MW, Garcia RA, Zanquetta MM, Durgan DJ, Jeong WJ, Tsai JY, Bugger H, Zhang D, Rohrwasser A, Rennison JH, Dyck JR, Litwin SE, Hardin PE, Chow CW, Chandler MP, Abel ED, Young ME. (2008). Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression. Am. J. Physiol. Heart Circ. Physiol. 294:H1036–H1047.
  • Brown SA, Ripperger J, Kadener S, Fleury-Olela F, Vilbois F, Rosbash M, Schibler U. (2005). PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 308:693–696.
  • Brown-Grant K, Raisman G. (1977). Abnormalities in reproductive function associated with the destruction of the suprachiasmatic nuclei in female rats. Proc. R. Soc. Lond. B Biol. Sci. 198:279–296.
  • Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC, Takahashi JS, Bradfield CA. (2000). Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103:1009–1017.
  • Busino L, Bassermann F, Maiolica A, Lee C, Nolan PM, Godinho SI, Draetta GF, Pagano M. (2007). SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316:900–904.
  • Cardone L, Hirayama J, Giordano F, Tamaru T, Palvimo JJ, Sassone-Corsi P. (2005). Circadian clock control by SUMOylation of BMAL1. Science 309:1390–1394.
  • Cermakian N, Boivin DB. (2009). The regulation of central and peripheral circadian clocks in humans. Obes. Rev. 10 Suppl 2:25–36.
  • Cheng HY, Papp JW, Varlamova O, Dziema H, Russell B, Curfman JP, Nakazawa T, Shimizu K, Okamura H, Impey S, Obrietan K. (2007). MicroRNA modulation of circadian-clock period and entrainment. Neuron 54:813–829.
  • Cheng P, He Q, He Q, Wang L, Liu Y. (2005). Regulation of the Neurospora circadian clock by an RNA helicase. Genes Dev. 19:234–241.
  • Coogan AN, Piggins HD. (2004). MAP kinases in the mammalian circadian system—key regulators of clock function. J. Neurochem. 90:769–775.
  • Crosio C, Cermakian N, Allis CD, Sassone-Corsi P. (2000). Light induces chromatin modification in cells of the mammalian circadian clock. Nat. Neurosci. 3:1241–1247.
  • Cuninkova L, Brown SA. (2008). Peripheral circadian oscillators: Interesting mechanisms and powerful tools. Ann. N. Y. Acad. Sci. 1129:358–370.
  • Curtis AM, Cheng Y, Kapoor S, Reilly D, Price TS, Fitzgerald GA. (2007). Circadian variation of blood pressure and the vascular response to asynchronous stress. Proc. Natl. Acad. Sci. USA 104:3450–3455.
  • Dardente H, Cermakian N. (2007). Molecular circadian rhythms in central and peripheral clocks in mammals. Chronobiol. Int. 24:195–213.
  • Dardente H, Fortier EE, Martineau V, Cermakian N. (2007). Cryptochromes impair phosphorylation of transcriptional activators in the clock: A general mechanism for circadian repression. Biochem. J. 402:525–536.
  • Dardente H, Mendoza J, Fustin JM, Challet E, Hazlerigg DG. (2008). Implication of the F-Box Protein FBXL21 in circadian pacemaker function in mammals. PLoS One 3:e3530.
  • DeBruyne JP, Noton E, Lambert CM, Maywood ES, Weaver DR, Reppert SM. (2006). A clock shock: Mouse CLOCK is not required for circadian oscillator function. Neuron 50:465–477.
  • DeBruyne JP, Weaver DR, Reppert SM. (2007a). CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nat. Neurosci. 10:543–545.
  • DeBruyne JP, Weaver DR, Reppert SM. (2007b). Peripheral circadian oscillators require CLOCK. Curr. Biol. 17:R538–R539.
  • Dioum EM, Rutter J, Tuckerman JR, Gonzalez G, Gilles-Gonzalez MA, McKnight SL. (2002). NPAS2: A gas-responsive transcription factor. Science 298:2385–2387.
  • Doi M, Hirayama J, Sassone-Corsi P. (2006). Circadian regulator CLOCK is a histone acetyltransferase. Cell 125:497–508.
  • Doi M, Cho S, Yujnovsky I, Hirayama J, Cermakian N, Cato AC, Sassone-Corsi P. (2007). Light-inducible and clock-controlled expression of MAP kinase phosphatase 1 in mouse central pacemaker neurons. J. Biol. Rhythms 22:127–139.
  • Douris N, Green CB. (2008). NOC out the fat: A short review of the circadian deadenylase Nocturnin. Ann. Med. 40:622–626.
  • Duffield GE. (2003). DNA microarray analyses of circadian timing: The genomic basis of biological time. J. Neuroendocrinol. 15:991–1002.
  • Duffield GE, Watson NP, Mantani A, Peirson SN, Robles-Murguia M, Loros JJ, Israel MA, Dunlap JC. (2009). A role for Id2 in regulating photic entrainment of the mammalian circadian system. Curr. Biol. 19:297–304.
  • Dunlap JC, Loros JJ, DeCoursey PJ (eds.). (2004). Chronobiology: Biological timekeeping. Sunderland, Mass.: Sinauer Associates, 406 pp.
  • Dunlap JC, Loros JJ, Colot HV, Mehra A, Belden WJ, Shi M, Hong CI, Larrondo LF, Baker CL, Chen CH, Schwerdtfeger C, Collopy PD, Gamsby JJ, Lambreghts R. (2007). A circadian clock in Neurospora: How genes and proteins cooperate to produce a sustained, entrainable, and compensated biological oscillator with a period of about a day. Cold Spring Harb. Symp. Quant. Biol. 72:57–68.
  • Durgan DJ, Trexler NA, Egbejimi O, McElfresh TA, Suk HY, Petterson LE, Shaw CA, Hardin PE, BrayMS, Chandler MP, Chow CW, Young ME. (2006). The circadian clock within the cardiomyocyte is essential for responsiveness of the heart to fatty acids. J. Biol. Chem. 281:24254–24269.
  • Eide EJ, Vielhaber EL, Hinz WA, Virshup DM. (2002). The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase Iepsilon. J. Biol. Chem. 277:17248–17254.
  • Eide EJ, Woolf MF, Kang H, Woolf P, Hurst W, Camacho F, Vielhaber EL, Giovanni A, Virshup DM. (2005). Control of mammalian circadian rhythm by CKIepsilon-regulated proteasome-mediated PER2 degradation. Mol. Cell. Biol. 25:2795–2807.
  • Etchegaray JP, Lee C, Wade PA, Reppert SM. (2003). Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421:177–182.
  • Etchegaray JP, Yang X, Debruyne JP, Peters AH, Weaver DR, Jenuwein T, Reppert SM. (2006). The polycomb group protein EZH2 is required for mammalian circadian clock function. J. Biol. Chem. 281:21209–21215.
  • Etchegaray JP, Machida KK, Noton E, Constance CM, Dallmann R, Di Napoli MN, DeBruyne JP, Lambert CM, Yu EA, Reppert SM, Weaver DR. (2009). Casein kinase 1 delta regulates the pace of the mammalian circadian clock. Mol. Cell. Biol. 29:3853–3866.
  • Field MD, Maywood ES, O'Brien JA, Weaver DR, Reppert SM, Hastings MH. (2000). Analysis of clock proteins in mouse SCN demonstrates phylogenetic divergence of the circadian clockwork and resetting mechanisms. Neuron 25:437–447.
  • Frame S, Cohen P. (2001). GSK3 takes centre stage more than 20 years after its discovery. Biochem. J. 359:1–16.
  • Fu L, Lee CC. (2003). The circadian clock: Pacemaker and tumour suppressor. Nat. Rev. Cancer 3:350–361.
  • Gallego M, Virshup DM. (2007). Post-translational modifications regulate the ticking of the circadian clock. Nat. Rev. Mol. Cell. Biol. 8:139–148.
  • Gallego M, Eide EJ, Woolf MF, Virshup DM, Forger DB. (2006a). An opposite role for tau in circadian rhythms revealed by mathematical modeling. Proc. Natl. Acad. Sci. USA 103:10618–10623.
  • Gallego M, Kang H, Virshup DM. (2006b). Protein phosphatase 1 regulates the stability of the circadian protein PER2. Biochem. J. 399:169–175.
  • Gatfield D, Le Martelot G, Vejnar CE, Gerlach D, Schaad O, Fleury-Olela F, Ruskeepaa AL, Oresic M, Esau CC, Zdobnov EM, Schibler U. (2009). Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev. 23:1313–1326.
  • Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, Takahashi JS, Weitz CJ. (1998). Role of the CLOCK protein in the mammalian circadian mechanism. Science 280:1564–1569.
  • Gery S, Komatsu N, Kawamata N, Miller C W, Desmond J, Virk RK, Marchevsky A, McKenna R, Taguchi H, Koeffler HP. (2007). Epigenetic silencing of the candidate tumor suppressor gene Per1 in non-small cell lung cancer. Clin. Cancer Res. 13:1399–1404.
  • Giguere V. (1999). Orphan nuclear receptors: From gene to function. Endocr. Rev. 20:689–725.
  • Godinho SI, Maywood ES, Shaw L, Tucci V, Barnard AR, Busino L, Pagano M, Kendall R, Quwailid MM, Romero MR, O'Neill J, Chesham JE, Brooker D, Lalanne Z, Hastings MH, Nolan PM. (2007). The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science 316:897–900.
  • Gorbacheva VY, Kondratov RV, Zhang R, Cherukuri S, Gudkov AV, Takahashi JS, Antoch MP. (2005). Circadian sensitivity to the chemotherapeutic agent cyclophosphamide depends on the functional status of the CLOCK/BMAL1 transactivation complex. Proc. Natl. Acad. Sci. USA 102:3407–3412.
  • Grechez-Cassiau A, Rayet B, Guillaumond F, Teboul M, Delaunay F. (2008). The circadian clock component BMAL1 is a critical regulator of p21WAF1/CIP1 expression and hepatocyte proliferation. J. Biol. Chem. 283:4535–4542.
  • Grima B, Lamouroux A, Chelot E, Papin C, Limbourg-Bouchon B, Rouyer F. (2002). The F-box protein Slimb controls the levels of clock proteins Period and Timeless. Nature 420:178–182.
  • Guillaumond F, Dardente H, Giguère V, Cermakian N. (2005). Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J. Biol. Rhythms 20:391–403.
  • Guo J, Cheng P, Yuan H, Liu Y. (2009). The exosome regulates circadian gene expression in a posttranscriptional negative feedback loop. Cell 138:1236–1246.
  • Harada Y, Sakai M, Kurabayashi N, Hirota T, Fukada Y. (2005). Ser-557-phosphorylated mCRY2 is degraded upon synergistic phosphorylation by glycogen synthase kinase-3 beta. J. Biol. Chem. 280:31714–31721.
  • Hardie DG. (2004). The AMP-activated protein kinase pathway—new players upstream and downstream. J. Cell Sci. 117:5479–5487.
  • Herrmann J, Lerman LO, Lerman A. (2007). Ubiquitin and ubiquitin-like proteins in protein regulation. Circ. Res. 100:1276–1291.
  • Hirayama J, Sahar S, Grimaldi B, Tamaru T, Takamatsu K, Nakahata Y, Sassone-Corsi P. (2007). CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450:1086–1090.
  • Hitomi K, DiTacchio L, Arvai AS, Yamamoto J, Kim ST, Todo T, Tainer JA, Iwai S, Panda S, Getzoff ED. (2009). Functional motifs in the (6-4) photolyase crystal structure make a comparative framework for DNA repair photolyases and clock cryptochromes. Proc. Natl. Acad. Sci. USA 106:6962–6967.
  • Hong HK, Chong JL, Song W, Song EJ, Jyawook AA, Schook AC, Ko CH, Takahashi JS. (2007). Inducible and reversible Clock gene expression in brain using the tTA system for the study of circadian behavior. PLoS Genet. 3:e33.
  • Hou TY, Ward SM, Murad JM, Watson NP, Israel MA, Duffield GE. (2009). Inhibitor of DNA binding 2 (ID2) is a rhythmically expressed transcriptional repressor required for circadian clock output in the mouse liver. J. Biol. Chem. 284:31735–31745.
  • Hunter T. (2007). The age of crosstalk: Phosphorylation, ubiquitination, and beyond. Mol. Cell 28:730–738.
  • Iitaka C, Miyazaki K, Akaike T, Ishida N. (2005). A role for glycogen synthase kinase-3beta in the mammalian circadian clock. J. Biol. Chem. 280:29397–29402.
  • Inoue I, Shinoda Y, Ikeda M, Hayashi K, Kanazawa K, Nomura M, Matsunaga T, Xu H, Kawai S, Awata T, Komoda T, Katayama S. (2005). CLOCK/BMAL1 is involved in lipid metabolism via transactivation of the peroxisome proliferator-activated receptor (PPAR) response element. J. Atheroscler. Thromb. 12:169–174.
  • Isojima Y, Nakajima M, Ukai H, Fujishima H, Yamada RG, Masumoto KH, Kiuchi R, Ishida M, Ukai-Tadenuma M, Minami Y, Kito R, Nakao K, Kishimoto W, Yoo SH, Shimomura K, Takao T, Takano A, Kojima T, Nagai K, Sakaki Y, Takahashi JS, Ueda HR. (2009). CKIepsilon/delta-dependent phosphorylation is a temperature-insensitive, period-determining process in the mammalian circadian clock. Proc. Natl. Acad. Sci. USA 106:15744–15749.
  • Jakubcakova V, Oster H, Tamanini F, Cadenas C, Leitges M, van der Horst GT, Eichele G. (2007). Light entrainment of the mammalian circadian clock by a PRKCA-dependent posttranslational mechanism. Neuron 54:831–843.
  • Jin J, Cardozo T, Lovering RC, Elledge SJ, Pagano M, Harper JW. (2004). Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev. 18:2573–2580.
  • Kaasik K, Lee CC. (2004). Reciprocal regulation of haem biosynthesis and the circadian clock in mammals. Nature 430:467–471.
  • Kang HS, Angers M, Beak JY, Wu X, Gimble JM, Wada T, Xie W, Collins JB, Grissom SF, Jetten AM. (2007). Gene expression profiling reveals a regulatory role for ROR alpha and ROR gamma in phase I and phase II metabolism. Physiol. Genomics 31:281–294.
  • Kemppainen RJ, Behrend EN. (1997). Adrenal physiology. Vet. Clin. North Am. Small Anim. Pract. 27:173–186.
  • Kennaway DJ, Boden MJ, Voultsios A. (2004). Reproductive performance in female Clock Delta19 mutant mice. Reprod. Fertil. Dev. 16:801–810.
  • Kennaway DJ, Owens JA, Voultsios A, Boden MJ, Varcoe TJ. (2007). Metabolic homeostasis in mice with disrupted Clock gene expression in peripheral tissues. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293:R1528–R1537.
  • Kita Y, Shiozawa M, Jin W, Majewski RR, Besharse JC, Greene AS, Jacob HJ. (2002). Implications of circadian gene expression in kidney, liver and the effects of fasting on pharmacogenomic studies. Pharmacogenetics 12:55–65.
  • Kiyohara YB, Tagao S, Tamanini F, Morita A, Sugisawa Y, Yasuda M, Yamanaka I, Ueda HR, van der Horst GT, Kondo T, Yagita K. (2006). The BMAL1 C terminus regulates the circadian transcription feedback loop. Proc. Natl. Acad. Sci. USA 103:10074–10079.
  • Klein D, Moore RY, Reppert SM. (1991). Suprachiasmatic nucleus: The mind's clock. New York: Oxford University Press.
  • Kloss B, Price JL, Saez L, Blau J, Rothenfluh A, Wesley CS, Young MW. (1998). The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iepsilon. Cell 94:97–107.
  • Ko CH, Takahashi JS. (2006). Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 15 Spec No 2:R271–R277.
  • Ko HW, Jiang J, Edery I. (2002). Role for Slimb in the degradation of Drosophila Period protein phosphorylated by doubletime. Nature 420:673–678.
  • Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y, Turek FW, Bass J. (2007). High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 6:414–421.
  • Kojima S, Matsumoto K, Hirose M, Shimada M, Nagano M, Shigeyoshi Y, Hoshino S, Ui-Tei K, Saigo K, Green CB, Sakaki Y, Tei H. (2007). LARK activates posttranscriptional expression of an essential mammalian clock protein, PERIOD1. Proc. Natl. Acad. Sci. USA 104:1859–1864.
  • Komander D, Clague MJ, Urbe S. (2009). Breaking the chains: Structure and function of the deubiquitinases. Nat. Rev. Mol. Cell. Biol. 10:550–563.
  • Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP. (2006a). Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes Dev. 20:1868–1873.
  • Kondratov RV, Kondratova AA, Lee C, Gorbacheva VY, Chernov MV, Antoch MP. (2006b). Post-translational regulation of circadian transcriptional CLOCK(NPAS2)/BMAL1 complex by CRYPTOCHROMES. Cell Cycle 5:890–895.
  • Kornmann B, Schaad O, Bujard H, Takahashi JS, Schibler U. (2007). System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol. 5:e34.
  • Kovac J, Husse J, Oster H. (2009). A time to fast, a time to feast: The crosstalk between metabolism and the circadian clock. Mol. Cells 28:75–80.
  • Kudo T, Tamagawa T, Kawashima M, Mito N, Shibata S. (2007). Attenuating effect of clock mutation on triglyceride contents in the ICR mouse liver under a high-fat diet. J. Biol. Rhythms 22:312–323.
  • Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, Jin X, Maywood ES, Hastings MH, Reppert SM. (1999). mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98:193–205.
  • Kunieda T, Minamino T, Miura K, Katsuno T, Tateno K, Miyauchi H, Kaneko S, Bradfield CA, FitzGerald GA, Komuro I. (2008). Reduced nitric oxide causes age-associated impairment of circadian rhythmicity. Circ. Res. 102:607–614.
  • Kuo SJ, Chen ST, Yeh KT, Hou MF, Chang YS, Hsu NC, Chang JG. (2009). Disturbance of circadian gene expression in breast cancer. Virchows Arch. 454:467–474.
  • Kwon I, Lee J, Chang SH, Jung NC, Lee BJ, Son GH, Kim K, Lee KH. (2006). BMAL1 shuttling controls transactivation and degradation of the CLOCK/BMAL1 heterodimer. Mol. Cell. Biol. 26:7318–7330.
  • Lamia KA, Storch KF, Weitz CJ. (2008). Physiological significance of a peripheral tissue circadian clock. Proc. Natl. Acad. Sci. USA 105:15172–15177.
  • Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG, Egan DF, Vasquez DS, Juguilon H, Panda S, Shaw RJ, Thompson CB, Evans RM. (2009). AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326:437–440.
  • Lee J, Lee Y, Lee MJ, Park E, Kang SH, Chung CH, Lee KH, Kim K. (2008). Dual modification of BMAL1 by SUMO2/3 and ubiquitin promotes circadian activation of the CLOCK/BMAL1 complex. Mol. Cell. Biol. 28:6056–6065.
  • Lin JD. (2009). Minireview: The PGC-1 coactivator networks: Chromatin-remodeling and mitochondrial energy metabolism. Mol. Endocrinol. 23:2–10.
  • Lin YC, Hsiao TJ, Chen PC. (2009). Persistent rotating shift-work exposure accelerates development of metabolic syndrome among middle-aged female employees: A five-year follow-up. Chronobiol. Int. 26:740–755.
  • Liu AC, Welsh DK, Ko CH, Tran HG, Zhang EE, Priest AA, Buhr ED, Singer O, Meeker K, Verma IM, Doyle FJ III, Takahashi JS, Kay SA. (2007a). Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 129:605–616.
  • Liu C, Li S, Liu T, Borjigin J, Lin JD. (2007b). Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 447:477–481.
  • Liu HC, Hu CJ, Tang YC, Chang JG. (2008). A pilot study for circadian gene disturbance in dementia patients. Neurosci. Lett. 435:229–233.
  • Lowrey PL, Shimomura K, Antoch MP, Yamazaki S, Zemenides PD, Ralph MR, Menaker M, Takahashi JS. (2000). Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288:483–492.
  • Maier B, Wendt S, Vanselow JT, Wallach T, Reischl S, Oehmke S, Schlosser A, Kramer A. (2009). A large-scale functional RNAi screen reveals a role for CK2 in the mammalian circadian clock. Genes Dev. 23:708–718.
  • Martinek S, Inonog S, Manoukian AS, Young MW. (2001). A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell 105:769–779.
  • Marvin KA, Reinking JL, Lee AJ, Pardee K, Krause HM, Burstyn JN. (2009). Nuclear receptors homo sapiens Rev-erbbeta and Drosophila melanogaster E75 are thiolate-ligated heme proteins which undergo redox-mediated ligand switching and bind CO and NO. Biochemistry 48:7056–7071.
  • McCarthy JJ, Andrews JL, McDearmon EL, Campbell KS, Barber BK, Miller BH, Walker JR, Hogenesch JB, Takahashi JS, Esser KA. (2007). Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiol. Genomics 31:86–95.
  • McDearmon EL, Patel KN, Ko CH, Walisser JA, Schook AC, Chong JL, Wilsbacher LD, Song EJ, Hong HK, Bradfield CA, Takahashi JS. (2006). Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice. Science 314:1304–1308.
  • Meng QJ, Logunova L, Maywood ES, Gallego M, Lebiecki J, Brown TM, Sladek M, Semikhodskii AS, Glossop NR, Piggins HD, Chesham JE, Bechtold DA, Yoo SH, Takahashi JS, Virshup DM, Boot-Handford RP, Hastings MH, Loudon AS. (2008). Setting clock speed in mammals: The CK1 epsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 58:78–88.
  • Miller BH, Olson SL, Turek FW, Levine JE, Horton TH, Takahashi JS. (2004). Circadian clock mutation disrupts estrous cyclicity and maintenance of pregnancy. Curr. Biol. 14:1367–1373.
  • Miller BH, McDearmon EL, Panda S, Hayes KR, Zhang J, Andrews JL, Antoch MP, Walker JR, Esser KA, Hogenesch JB, Takahashi JS. (2007). Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc. Natl. Acad. Sci. USA 104:3342–3347.
  • Mongrain V, Cermakian N. (2009). Clock genes in health and diseases. J. Appl. Biomed. 7:15–33.
  • Na YJ, Sung JH, Lee SC, Lee YJ, Choi YJ, Park WY, Shin HS, Kim JH. (2009). Comprehensive analysis of microRNA-mRNA co-expression in circadian rhythm. Exp. Mol. Med. 41:638–647.
  • Nader N, Chrousos GP, Kino T. (2009). Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: Potential physiological implications. FASEB J. 23:1572–1583.
  • Naimi M, Arous C, Van Obberghen E. (2009). Energetic cell sensors: A key to metabolic homeostasis. Trends Endocrinol. Metab. Oct 9. [Epub ahead of print]
  • Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P. (2008). The NAD + -dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329–340.
  • Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P. (2009). Circadian control of the NAD +  salvage pathway by CLOCK-SIRT1. Science 324:654–657.
  • Nakamura K, Inoue I, Takahashi S, Komoda T, Katayama S. (2008). Cryptochrome and period proteins are regulated by the CLOCK/BMAL1 gene: Crosstalk between the PPARs/RXRalpha-regulated and CLOCK/BMAL1-regulated systems. PPAR Res. 2008:348610.
  • Naruse Y, Oh-hashi K, Iijima N, Naruse M, Yoshioka H, Tanaka M. (2004). Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation. Mol. Cell. Biol. 24:6278–6287.
  • Obrietan K, Impey S, Storm DR. (1998). Light and circadian rhythmicity regulate MAP kinase activation in the suprachiasmatic nuclei. Nature Neurosci. 1:693–700.
  • Ohsaki K, Oishi K, Kozono Y, Nakayama K, Nakayama KI, Ishida N. (2008). The role of β-TrCP1 and β-TrCP2 in circadian rhythm generation by mediating degradation of clock protein PER2. J. Biochem. 144:609–618.
  • Oishi K, Sakamoto K, Okada T, Nagase T, Ishida N. (1998). Antiphase circadian expression between BMAL1 and period homologue mRNA in the suprachiasmatic nucleus and peripheral tissues of rats. Biochem. Biophys. Res. Commun. 253:199–203.
  • OishiK, Amagai N, Shirai H, Kadota K, Ohkura N, Ishida N. (2005). Genome-wide expression analysis reveals 100 adrenal gland-dependent circadian genes in the mouse liver. DNA Res. 12:191–202.
  • Oishi K, Atsumi G, Sugiyama S, Kodomari I, Kasamatsu M, Machida K, Ishida N. (2006). Disrupted fat absorption attenuates obesity induced by a high-fat diet in Clock mutant mice. FEBS Lett. 580:127–130.
  • Okamura H. (2007). Suprachiasmatic nucleus clock time in the mammalian circadian system. Cold Spring Harb. Symp. Quant. Biol. 72:551–556.
  • Oster H, Damerow S, Kiessling S, Jakubcakova V, Abraham D, Tian J, Hoffmann MW, Eichele G. (2006a). The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab. 4:163–173.
  • Oster H, Damerow S, Hut RA, Eichele G. (2006b). Transcriptional profiling in the adrenal gland reveals circadian regulation of hormone biosynthesis genes and nucleosome assembly genes. J. Biol. Rhythms 21:350–361.
  • Pan ZQ, Kentsis A, Dias DC, Yamoah K, Wu K. (2004). Nedd8 on cullin: Building an expressway to protein destruction. Oncogene 23:1985–1997.
  • Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS, Hogenesch JB. (2002). Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109:307–320.
  • Pardee KI, Xu X, Reinking J, Schuetz A, Dong A, Liu S, Zhang R, Tiefenbach J, Lajoie G, Plotnikov AN, Botchkarev A, Krause HM, Edwards A. (2009). The structural basis of gas-responsive transcription by the human nuclear hormone receptor REV-ERBbeta. PLoS Biol. 7:e43.
  • Park Y, Yoon SK, Yoon JB. (2008). TRIP12 functions as an E3 ubiquitin ligase of APP-BP1. Biochem. Biophys. Res. Commun. 374:294–298.
  • Partch CL, Shields KF, Thompson CL, Selby CP, Sancar A. (2006). Posttranslational regulation of the mammalian circadian clock by cryptochrome and protein phosphatase 5. Proc. Natl. Acad. Sci. USA 103:10467–10472.
  • Pregueiro AM, Liu Q, Baker CL, Dunlap JC, Loros JJ. (2006). The Neurospora checkpoint kinase 2: A regulatory link between the circadian and cell cycles. Science 313:644–649.
  • Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U. (2002). The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–260.
  • Price JL, Blau J, Rothenfluh A, Abodeely M, Kloss B, Young MW. (1998). Double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94:83–95.
  • Puigserver P. (2005). Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-alpha. Int. J. Obes. (Lond.) 29 Suppl 1:S5–S9.
  • Raghuram S, Stayrook KR, Huang P, Rogers PM, Nosie AK, McClure DB, Burris LL, Khorasanizadeh S, Burris TP, Rastinejad F. (2007). Identification of heme as the ligand for the orphan nuclear receptors REV-ERBalpha and REV-ERBbeta. Nat. Struct. Mol. Biol. 14:1207–1213.
  • Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, Hong HK, Chong JL, Buhr ED, Lee C, Takahashi JS, Imai S, Bass J. (2009). Circadian clock feedback cycle through NAMPT-mediated NAD +  biosynthesis. Science 324:651–654.
  • Reddy AB, Karp NA, Maywood ES, Sage EA, Deery M, O'Neill JS, Wong GK, Chesham J, Odell M, Lilley KS, Kyriacou CP, Hastings MH. (2006). Circadian orchestration of the hepatic proteome. Curr. Biol. 16:1107–1115.
  • Reischl S, Vanselow K, Westermark PO, Thierfelder N, Maier B, Herzel H, Kramer A. (2007). Beta-TrCP1-mediated degradation of PERIOD2 is essential for circadian dynamics. J. Biol. Rhythms 22:375–386.
  • Reppert SM, Weaver DR. (2002). Coordination of circadian timing in mammals. Nature 418:935–941.
  • Ripperger JA, Schibler U. (2006). Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian DBP transcription and chromatin transitions. Nat. Genet. 38:369–374.
  • Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. (2005). Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113–118.
  • Roybal K, Theobold D, Graham A, DiNieri JA, Russo SJ, Krishnan V, Chakravarty S, Peevey J, Oehrlein N, Birnbaum S, Vitaterna MH, Orsulak P, Takahashi JS, Nestler EJ, Carlezon WA, Sr McClung CA. (2007). Mania-like behavior induced by disruption of CLOCK. Proc. Natl. Acad. Sci. USA 104:6406–6411.
  • Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S, Hogenesch JB, Fitzgerald GA. (2004). BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2:e377.
  • Rutter J, Reick M, Wu LC, McKnight SL. (2001). Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293:510–514.
  • Rutter J, Reick M, McKnight SL. (2002). Metabolism and the control of circadian rhythms. Annu. Rev. Biochem. 71:307–331.
  • Sanada K, Okano T, Fukada Y. (2002). Mitogen-activated protein kinase phosphorylates and negatively regulates basic helix-loop-helix-PAS transcription factor BMAL1. J. Biol. Chem. 277:267–271.
  • Sathyanarayanan S, Zheng X, Xiao R, Sehgal A. (2004). Posttranslational regulation of Drosophila PERIOD protein by protein phosphatase 2A. Cell 116:603–615.
  • Sathyanarayanan S, Zheng X, Kumar S, Chen CH, Chen D, Hay B, Sehgal A. (2008). Identification of novel genes involved in light-dependent CRY degradation through a genome-wide RNAi screen. Genes Dev. 22:1522–1533.
  • Sato TK, Panda S, Miraglia LJ, Reyes TM, Rudic RD, McNamara P, Naik KA, FitzGerald GA, Kay SA, Hogenesch JB. (2004). A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43:527–537.
  • Sato TK, Yamada RG, Ukai H, Baggs JE, Miraglia LJ, Kobayashi TJ, Welsh DK, Kay SA, Ueda HR, Hogenesch JB. (2006). Feedback repression is required for mammalian circadian clock function. Nat. Genet. 38:312–319.
  • Schibler U, Ripperger J, Brown SA. (2003). Peripheral circadian oscillators in mammals: Time and food. J. Biol. Rhythms 18:250–260.
  • Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, Zheng B, Kume K, Lee CC, van der Horst GT, Hastings MH, Reppert SM. (2000). Interacting molecular loops in the mammalian circadian clock. Science 288:1013–1019.
  • Shih MC, Yeh KT, Tang KP, Chen JC, Chang JG. (2006). Promoter methylation in circadian genes of endometrial cancers detected by methylation-specific PCR. Mol. Carcinog. 45:732–740.
  • Shim HS, Kim H, Lee J, Son GH, Cho S, Oh TH, Kang SH, Seen DS, Lee KH, Kim K. (2007). Rapid activation of CLOCK by Ca2 + -dependent protein kinase C mediates resetting of the mammalian circadian clock. EMBO Rep. 8:366–371.
  • Shimba S, Ishii N, Ohta Y, Ohno T, Watabe Y, Hayashi M, Wada T, Aoyagi T, Tezuka M. (2005). Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc. Natl. Acad. Sci. USA 102:12071–12076.
  • Shirogane T, Jin J, Ang XL, Harper JW. (2005). SCFbeta-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein. J. Biol. Chem. 280:26863–26872.
  • Siepka SM, Yoo SH, Park J, Song W, Kumar V, Hu Y, Lee C, Takahashi JS. (2007). Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell 129:1011–1023.
  • Sims RJ III, Reinberg D. (2008). Is there a code embedded in proteins that is based on post-translational modifications? Nat. Rev. Mol. Cell. Biol. 9:815–820.
  • So AY, Bernal TU, Pillsbury ML, Yamamoto KR, Feldman BJ. (2009). Glucocorticoid regulation of the circadian clock modulates glucose homeostasis. Proc. Natl. Acad. Sci. USA 106:17582–17587.
  • Son GH, Chung S, Choe HK, Kim HD, Baik SM, Lee H, Lee HW, Choi S, Sun W, Kim H, Cho S, Lee KH, Kim K. (2008). Adrenal peripheral clock controls the autonomous circadian rhythm of glucocorticoid by causing rhythmic steroid production. Proc. Natl. Acad. Sci. USA 105:20970–20975.
  • Sonoda J, Mehl IR, Chong LW, Nofsinger RR, Evans RM. (2007). PGC-1beta controls mitochondrial metabolism to modulate circadian activity, adaptive thermogenesis, and hepatic steatosis. Proc. Natl. Acad. Sci. USA 104:5223–5228.
  • Sowa ME, Bennett EJ, Gygi SP, Harper JW. (2009). Defining the human deubiquitinating enzyme interaction landscape. Cell 138:389–403.
  • Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, Weitz CJ. (2002). Extensive and divergent circadian gene expression in liver and heart. Nature 417:78–83.
  • Storch KF, Paz C, Signorovitch J, Raviola E, Pawlyk B, Li T, Weitz CJ. (2007). Intrinsic circadian clock of the mammalian retina: Importance for retinal processing of visual information. Cell 130:730–741.
  • Takahata S, Ozaki T, Mimura J, Kikuchi Y, Sogawa K, Fujii-Kuriyama Y. (2000). Transactivation mechanisms of mouse clock transcription factors, mClock and mArnt3. Genes Cells 5:739–747.
  • Takano A, Isojima Y, Nagai K. (2004). Identification of mPer1 phosphorylation sites responsible for the nuclear entry. J. Biol. Chem. 279:32578–32585.
  • Tamaru T, Hirayama J, Isojima Y, Nagai K, Norioka S, Takamatsu K, Sassone-Corsi P. (2009). CK2alpha phosphorylates BMAL1 to regulate the mammalian clock. Nat. Struct. Mol. Biol. 16:446–448.
  • Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, Virshup DM, Ptacek LJ, Fu YH. (2001). An hPer2 phosphorylation site mutation in familial advanced sleep-phase syndrome. Science 291:1040–1043.
  • Tsuchiya Y, Akashi M, Matsuda M, Goto K, Miyata Y, Node K, Nishida E. (2009). Involvement of the protein kinase CK2 in the regulation of mammalian circadian rhythms. Sci. Signal2:ra26.
  • Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, Eckel RH, Takahashi JS, Bass J. (2005). Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308:1043–1045.
  • Ueda HR, Chen W, Adachi A, Wakamatsu H, Hayashi S, Takasugi T, Nagano M, Nakahama K, Suzuki Y, Sugano S, Iino M, Shigeyoshi Y, Hashimoto S. (2002). A transcription factor response element for gene expression during circadian night. Nature 418:534–539.
  • Ueda HR, Hayashi S, Chen W, Sano M, Machida M, Shigeyoshi Y, Iino M, Hashimoto S. (2005). System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat. Genet. 37:187–192.
  • Um JH, Yang S, Yamazaki S, Kang H, Viollet B, Foretz M, Chung JH. (2007). Activation of 5'-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2. J. Biol. Chem. 282:20794–20798.
  • Vaissiere T, Sawan C, Herceg Z. (2008). Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat. Res. 659:40–48.
  • Vanselow K, Kramer A. (2007). Role of phosphorylation in the mammalian circadian clock. Cold Spring Harb. Symp. Quant. Biol. 72:167–176.
  • Vanselow K, Vanselow JT, Westermark PO, Reischl S, Maier B, Korte T, Herrmann A, Herzel H, Schlosser A, Kramer A. (2006). Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS). Genes Dev.20:2660–2672.
  • Vielhaber E, Eide E, Rivers A, Gao ZH, Virshup DM. (2000). Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase I epsilon. Mol. Cell. Biol. 20:4888–4899.
  • Walton KM, Fisher K, Rubitski D, Marconi M, Meng QJ, Sladek M, Adams J, Bass M, Chandrasekaran R, Butler T, Griffor M, Rajamohan F, Serpa M, Chen Y, Claffey M, Hastings M, Loudon A, Maywood E, Ohren J, Doran A, Wager TT. (2009). Selective inhibition of casein kinase 1 epsilon minimally alters circadian clock period. J. Pharmacol. Exp. Ther. 330:430–439.
  • Wang N, Yang G, Jia Z, Zhang H, Aoyagi T, Soodvilai S, Symons JD, Schnermann JB, Gonzalez FJ, Litwin SE, Yang T. (2008). Vascular PPARgamma controls circadian variation in blood pressure and heart rate through Bmal1. Cell. Metab. 8:482–491.
  • Westgate EJ, Cheng Y, Reilly DF, Price TS, Walisser JA, Bradfield CA, FitzGerald GA. (2008). Genetic components of the circadian clock regulate thrombogenesis in vivo. Circulation 117:2087–2095.
  • Wojcik M, Mac-Marcjanek K, Wozniak LA. (2009). Physiological and pathophysiological functions of SIRT1. Mini. Rev. Med. Chem. 9:386–394.
  • Woon PY, Kaisaki PJ, Braganca J, Bihoreau MT, Levy JC, Farrall M, Gauguier D. (2007). Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc. Natl. Acad. Sci. USA 104:14412–14417.
  • Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N, Saigoh K, Ptacek LJ, Fu YH. (2005). Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 434:640–644.
  • Xu Y, Toh KL, Jones CR, Shin JY, Fu YH, Ptacek LJ. (2007). Modeling of a human circadian mutation yields insights into clock regulation by PER2. Cell 128:59–70.
  • Yagita K, Yamanaka I, Koinuma S, Shigeyoshi Y, Uchiyama Y. (2009). Mini screening of kinase inhibitors affecting period-length of mammalian cellular circadian clock. Acta Histochem. Cytochem. 42:89–93.
  • Yamamoto H, Nagai K, Nakagawa H. (1984). Additional evidence that the suprachiasmatic nucleus is the center for regulation of insulin secretion and glucose homeostasis. Brain Res. 304:237–241.
  • Yang J, Kim KD, Lucas A, Drahos KE, Santos CS, Mury SP, Capelluto DG, Finkielstein CV. (2008). A novel heme-regulatory motif mediates heme-dependent degradation of the circadian factor period 2. Mol. Cell. Biol. 28:4697–4711.
  • Yang MY, Chang JG, Lin PM, Tang KP, Chen YH, Lin HY, Liu TC, Hsiao HH, Liu YC, Lin SF. (2006a). Downregulation of circadian clock genes in chronic myeloid leukemia: Alternative methylation pattern of hPER3. Cancer Sci. 97:1298–1307.
  • Yang X, Downes M, Yu RT, Bookout AL, He W, Straume M, Mangelsdorf DJ, Evans RM. (2006b). Nuclear receptor expression links the circadian clock to metabolism. Cell 126:801–810.
  • Yang X, Wood PA, Ansell CM, Ohmori M, Oh EY, Xiong Y, Berger FG, Pena MM, Hrushesky WJ. (2009a). Beta-catenin induces beta-TrCP-mediated PER2 degradation altering circadian clock gene expression in intestinal mucosa of ApcMin/ +  mice. J. Biochem. 145:289–297.
  • Yang XD, Lamb A, Chen LF. (2009b). Methylation, a new epigenetic mark for protein stability. Epigenetics 4 [Epub ahead of print].
  • Yang Y, He Q, Cheng P, Wrage P, Yarden O, Liu Y. (2004). Distinct roles for PP1 and PP2A in the Neurospora circadian clock. Genes Dev. 18:255–260.
  • Yin L, Lazar MA. (2005). The orphan nuclear receptor Rev-erbalpha recruits the N-CoR/histone deacetylase 3 corepressor to regulate the circadian Bmal1 gene. Mol. Endocrinol. 19:1452–1459.
  • Yin L, Wang J, Klein PS, Lazar MA. (2006). Nuclear receptor Rev-erbalpha is a critical lithium-sensitive component of the circadian clock. Science 311:1002–1005.
  • Yin L, Wu N, Curtin JC, Qatanani M, Szwergold NR, Reid RA, Waitt GM, Parks DJ, Pearce KH, Wisely GB, Lazar MA. (2007). Rev-erbalpha, a heme sensor that coordinates metabolic and circadian pathways. Science 318:1786–1789.
  • Yoshitane H, Takao T, Satomi Y, Du NH, Okano T, Fukada Y. (2009). Roles of CLOCK phosphorylation in suppression of E-box-dependent transcription. Mol. Cell. Biol. 29:3675–3686.
  • Zhao WN, Malinin N, Yang FC, Staknis D, Gekakis N, Maier B, Reischl S, Kramer A, Weitz CJ. (2007). CIPC is a mammalian circadian clock protein without invertebrate homologues. Nat. Cell Biol. 9:268–275.
  • Zuber AM, Centeno G, Pradervand S, Nikolaeva S, Maquelin L, Cardinaux L, Bonny O, Firsov D. (2009). Molecular clock is involved in predictive circadian adjustment of renal function. Proc. Natl. Acad. Sci. USA 106:16523–16528.
  • Zvonic S, Ptitsyn AA, Conrad SA, Scott LK, Floyd ZE, Kilroy G, Wu X, Goh BC, Mynatt RL, Gimble JM. (2006). Characterization of peripheral circadian clocks in adipose tissues. Diabetes 55:962–970.
  • Zvonic S, Floyd ZE, Mynatt RL, Gimble JM. (2007). Circadian rhythms and the regulation of metabolic tissue function and energy homeostasis. Obesity (Silver Spring) 15:539–543.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.