Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 27, 2010 - Issue 4
449
Views
21
CrossRef citations to date
0
Altmetric
Research Article

GLIAL TRANSCRIPTS AND IMMUNE-CHALLENGED GLIA IN THE SUPRACHIASMATIC NUCLEUS OF YOUNG AND AGED MICE

, , , , , & show all
Pages 742-767 | Received 22 Aug 2009, Accepted 11 Jan 2010, Published online: 18 Jun 2010

REFERENCES

  • Abrahamson EE, Moore RY. (2001). Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res. 916:172–191.
  • Aujard F, Cayetanot F, Bentivoglio M, Perret M. (2006). Age-related effects on the biological clock and its behavioral output in a primate. Chronobiol. Int. 23:451–460.
  • Aujard F, Cayetanot F, Terrien J, Van Someren EJ. (2007). Attenuated effect of increased wavelength on activity rhythm in the old mouse lemur, a non-human primate. Exp. Gerontol. 42:1079–1087.
  • Antle MC, Silver R. (2005). Orchestrating time: arrangements of the brain circadian clock. Trends Neurosci. 28:145–151.
  • Arnaout MA, Gupta SK, Pierce MW, Tenen DG. (1988). Amino acid sequence of the alpha subunit of human leukocyte adhesion receptor Mo1 (complement receptor type 3). J. Cell Biol. 106:2153–2158.
  • Austyn JM, Gordon S. (1981). F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur. J. Immunol. 11:805–815.
  • Becquet D, Giradet C, Guillaumond F, François-Bellan A-M, Bosler O. (2008). Ultrastructural plasticity in the rat suprachiasmatic nucleus. Possible involvement in clock entrainment. Glia 56:294–305.
  • Bentivoglio M, Deng X-H, Nygård M, Sadki A, Kristensson K. (2006). The aging suprachiasmatic nucleus and cytokines: functional, molecular, and cellular changes in rodents. Chronobiol. Int. 23:437–449.
  • Bentivoglio M, Kristensson K. (2007). Neural-immune interactions in disorders of sleep-wakefulness organization. Trends Neurosci. 30:645–652.
  • Bodles AM, Barger SW. (2004). Cytokines and the aging brain—what we don't know might help us. Trends Neurosci. 27:621–626.
  • Butler MP, Silver R. (2009) Basis of robustness and resilience in the suprachiasmatic nucleus: individual neurons form nodes in circuits that cycle daily. J. Biol. Rhythms 24:340–352.
  • Cajochen C, Münch M, Knoblauch V, Blatter K, Wirz-Justice A. (2006). Age-related changes in the circadian and homeostatic regulation of human sleep. Chronobiol. Int. 23:461–474.
  • Chianella S, Semprevivo M, Peng Z-C, Zaccheo D, Bentivoglio M, Grassi-Zucconi G. (1999). Microglia activation in a model of sleep disorder: an immunohistochemical study in the rat brain during Trypanosoma brucei infection. Brain Res. 832:54–62.
  • Coogan AN, Wyse CA. (2008). Neuroimmunology of the circadian clock. Brain Res. 1232:104–112.
  • Conde JR, Streit WJ. (2006). Microglia in the aging brain. J. Neuropathol. Exp. Neurol. 65:199–203.
  • Corbi AL, Kishimoto TK, Miller LJ, Springer TA. (1988). The human leukocyte adhesion glycoprotein Mac-1 (complement receptor type 3, CD11b) alpha subunit. Cloning, primary structure, and relation to the integrins, von Willebrand factor and factor B. J. Biol. Chem. 263:12403–12411.
  • Davoust N, Vuaillat C, Androdias G, Nataf S. (2008). From bone marrow to microglia: barriers and avenues. Trends Immunol. 29:227–234.
  • Deng X-H, Bertini G, Xu Y-Z, Yan Z, Bentivoglio M. (2006). Cytokine-induced activation of glial cells in the mouse brain is enhanced at an advanced age. Neuroscience 141:645–661.
  • Dilger RN, Johnson RW. (2008). Aging, microglial cell priming, and the discordant central inflammatory response to signals from the peripheral immune system. J. Leukoc. Biol. 84:1–8.
  • Duguay D, Cermakian N. (2009). The crosstalk between physiology and circadian clock proteins. Chronobiol. Int. 26:1479–1513.
  • Erschler WB. (1998). Biomarkers of aging: immunological events. Exp. Gerontol. 23:387–389.
  • Franklin KBJ, Paxinos G. (1997). The mouse brain in stereotaxic coordinates. Academic Press, San Diego.
  • Gerics B, Szalay F, Hajós F. (2006). Glial fibrilary acidic protein immunoreactivity in the rat suprachiasmatic nucleus: circadian changes and their seasonal dependence. J. Anat. 209:231–237.
  • Goss JR, Finch CE, Morgan DG. (1991). Age-related changes in glial fibrillary acidic protein mRNA in the mouse brain. Neurobiol. Aging 12:165–170.
  • Hanisch U-K. (2002). Microglia as a source and target of cytokines. Glia 40:140–155.
  • Hanisch U-K, Kettenmann H. (2007). Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 10:1387–1394.
  • Ikeda T, Iijima N, Munekawa K, Ishihara A, Ibata Y, Tanaka M. (2003). Functional retinal input stimulates expression of astroglial elements in the suprachiasmatic nucleus of postnatal developing rat. Neurosci. Res. 47:39–45.
  • Jucker M, Ingram DK. (1997). Murine models of brain aging and age-related neurodegenerative diseases. Behav. Brain Res. 85:1–26.
  • Kalehua AN, Taub DD, Baskar PV, Hengemihle J, Muñoz J, Trambadia M., Speer DL, De Simoni MG, Ingram DK. (2000). Aged mice exhibit greater mortality concomitant to increased brain and plasma TNF-α levels following intracerebroventricular injection of lipopolysaccharide. Gerontology 46:115–128.
  • Kong GY, Kristensson K, Bentivoglio M. (2002). Reaction of mouse brain oligodendrocytes and their precursors, astrocytes and microglia, to proinflammatory mediators circulating in the cerebrospinal fluid. Glia 37:191–205.
  • Kramer A, Yang F-C, Kraves S, Weitz CJ. (2005). A screen for secreted factors of the suprachiasmatic nucleus. Methods Enzymol. 393:645–663.
  • Kwak Y, Lundkvist GB, Brask J, Davidson A, Menaker M, Kristensson K, Block GD. (2008). Interferon-γ alters electrical activity and clock gene expression in suprachiasmatic nucleus neurons. J. Biol. Rhythms 23:150–159.
  • Lavialle M, Begue A, Papillon C, Vilaplana J. (2001). Modifications of retinal afferent activity induce changes in astroglial plasticity in the hamster circadian clock. Glia 34:88–100.
  • Lavialle M, Servière J. (1993). Circadian fluctuations in GFAP distribution in the Syrian hamster suprachiasmatic nucleus. Neuroreport 4:1243–1246.
  • Lavialle M, Servière J. (1995). Developmental study in the circadian clock of the golden hamster: a putative role of astrocytes. Dev. Brain Res. 86:275–282.
  • Lawson LJ, Perry VH, Dri P, Gordon S. (1990). Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170.
  • Lee C-K, Weindruch R, Prolla TA. (2000). Gene expression profile of the ageing brain in mice. Nature 25:294–297.
  • Leone MJ, Marpegán L, Bekinschtein TA, Costas MA, Golombek DA. (2006). Suprachiasmatic astrocytes as an interface for immune-circadian signalling. J. Neurosci. Res. 84:1521–1527.
  • Li X, Sankrithi N, Davis FC. (2002). Transforming growth factor-α is expressed in astrocytes of the suprachiasmatic nucleus in hamster: role of glial cells in circadian clocks. NeuroReport 13:2143–2147.
  • Lindley J, Deurveilher S, Rusak B, Semba K. (2008). Transforming growth factor-α and glial fibrillary acidic protein in the hamster circadian system: daily profile and cellular localization. Brain Res. 1197:94–105.
  • Livak KJ, Schmittgen TD. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408.
  • Lundkvist GB, Hill RH, Kristensson K. (2002). Disruption of circadian rhythms in synaptic activity of the suprachiasmatic nuclei by African trypanosomes and cytokines. Neurobiol. Dis. 11:20–27.
  • Lundkvist GB, Robertson B, Mhlanga JD, Rottenberg ME, Kristensson K. (1998). Expression of an oscillating interferon-gamma receptor in the suprachiasmatic nuclei. NeuroReport 9:1059–1063.
  • Madeira MD, Sousa N, Santer RM, Paula-Barbosa MM, Gundersen HJ. (1995). Age and sex do not affect the volume, cell numbers, or cell size of the suprachiasmatic nucleus of the rat: an unbiased stereological study. J. Comp. Neurol. 361:585–601.
  • Marpegán L, Bekinschtein TA, Costas MA, Golombek DA. (2005). Circadian responses to endotoxin treatment in mice. J. Neuroimmunol. 160:102–109.
  • Marpegán L, Bekinschtein TA, Freudenthal R, Rubio MF, Ferreyra GA, Romano A, Golombek DA. (2004). Participation of transcription factors from the Rel/NF-κB family in the circadian system in hamsters. Neurosci. Lett. 308:9–12.
  • Moore RY, Speh JC, Leak RK. (2002). Suprachiasmatic nucleus organization. Cell Tissue Res. 309:89–98.
  • Morgan TE, Xie Z, Goldsmith S, Yoshida T, Lanzrein AS, Stone D, Rozovsky I, Perry G, Smith MA, Finch CE. (1999). The mosaic of brain glial hyperactivity during normal ageing and its attenuation by food restriction. Neuroscience 89:687–699.
  • Morin LP. (2007). SCN organization reconsidered. J. Biol. Rhythms 22:3–13.
  • Morin LP, Allen CN. (2006). The circadian visual system, 2005. Brain Res. Rev. 51:1–60.
  • Morin LP, Johnson RF, Moore RY. (1989). Two brain nuclei controlling circadian rhythms are identified by GFAP immunoreactivity in hamsters and rats. Neurosci. Lett. 99:55–60.
  • Morin LP, Shivers K-Y, Blanchard JH, Muscat L. (2006). Complex organization of mouse and rat suprachiasmatic nucleus. Neuroscience 137:1285–1297.
  • Moriya T, Yoshinobu Y, Kouzu Y, Katoh A, Gomi H, Ikeda M, Yoshioka T, Itohara S, Shibata S. (2000). Involvement of glial fibrillary acidic protein (GFAP) expressed in astroglial cells in circadian rhythm under constant lighting conditions in mice. J. Neurosci. Res. 60:212–218.
  • Munekawa K, Tamada Y, Iijima N, Hayashi S, Ishihara A, Inoue K, Tanaka M, Ibata Y. (2000). Development of astroglial elements in the suprachiasmatic nucleus of the rat with special reference to the involvement of the optic nerve. Exp. Neurol. 166:44–51.
  • Nava F, Carta G, Haynes LW. (2000). Lipopolysaccharide increases arginine-vasopressin release from rat suprachiasmatic nucleus slice cultures. Neurosci. Lett. 288:228–230.
  • Nygård M, Lundkvist GB, Hill RH, Kristensson K. (2009). Rapid nitric oxide-dependent effect of tumor necrosis factor-α on suprachiasmatic nuclei neuronal activity. Neuroreport 20:213–217.
  • Ohdo S, Koyanagi S, Suyama H, Higuchi S, Aramaki S. (2001). Changing the dosing schedule minimizes the disruptive effects of interferon on clock function. Nat. Med. 7:356–360.
  • Palomba M, Bentivoglio M. (2008). Chronic inflammation affects the photic response of the suprachiasmatic nucleus. J. Neuroimmunol. 193:24–27.
  • Perry VH, Hume DA, Gordon S. (1985). Immunohistochemical localisation of macrophages and microglia in the adult and developing mouse brain. Neuroscience 15:313–326.
  • Peters A, Verderosa A, Sethares C. (2008). The neuroglial population in the primary visual cortex of the aging rhesus monkey. Glia 56:1151–1161.
  • Portaluppi F, Touitou Y, Smolensky MH. (2008). Ethical and methodological standards for laboratory and medical biological rhythm research. Chronobiol. Int. 25:999–1016.
  • Prinz PN. (2004). Age impairments in sleep, metabolic and immune functions. Exp. Gerontol. 39:1739–1743.
  • Prolo LM, Takahashi JS, Herzog ED. (2005). Circadian rhythm generation and entrainment in astrocytes. J. Neurosci. 25:404–408.
  • Prosser RA, Dale EM, Heller HC, Miller JD. (1994). A possible glial role in the mammalian circadian clock. Brain Res. 643:296–301.
  • Raivich G, Banati R. (2004). Brain microglia and blood-derived macrophages: molecular profiles and functional roles in multiple sclerosis and animal models of autoimmune demyelinating disease. Brain Res. Rev. 46:261–281.
  • Raivich G, Bohatschek M, Kloss CUA, Werner A, Jones LL, Kreutzberg GW. (1999). Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res. Rev. 30:77–105.
  • Robertson B, Kong G-Y, Peng Z-C, Bentivoglio M, Kristensson K. (2000). Interferon-γ-responsive neuronal sites in the normal rat brain: receptor protein distribution and cell activation revealed by Fos induction. Brain Res. Bull. 52:61–74.
  • Rotshenker S. (2003). Microglia and macrophage activation and the regulation of complement-receptor-3 (CR3/MAC-1)-mediated myelin phagocytosis in injury and disease. J. Mol. Neurosci. 21:65–72.
  • Sadki A, Bentivoglio M, Kristensson K, Nygård M. (2007). Suppressors, receptors and effects of cytokines on the aging mouse biological clock. Neurobiol. Aging 28:296–305.
  • Saper CB, Lu J, Chou TC, Gooley J. (2005). The hypothalamic integrator for circadian rhythms. Trends Neurosci. 28:152–157.
  • Satriotomo I, Miki T, Gonzalez D, Matsumoto Y, Li HP, Gu H, Takeuchi Y. (2004). Excessive testosterone treatment and castration induce reactive astrocytes and fos immunoreactivity in suprachiasmatic nucleus of mice. Brain Res. 1020:130–139.
  • Saurwein-Teissl M, Blasko I, Zisterer K, Neuman B, Lang B, Grubeck-Loebenstein B. (2000). An imbalance between pro- and anti-inflammatory cytokines, a characteristic feature of old age. Cytokine 12:1160–1161.
  • Silver R, Schwartz WJ. (2005). The suprachiasmatic nucleus is a functionally heterogeneous timekeeping organ. Methods Enzymol. 3993:451–465.
  • Soulet D, Rivest S. (2008) Microglia. Curr. Biol. 18:R506–R508.
  • Stichel CC, Luebbert H. (2007). Inflammatory processes in the aging mouse brain: participation of dendritic cells and T-cells. Neurobiol. Aging 28:1507–1521.
  • Tamada Y, Tanaka M, Munekawa K, Hayashi S, Okamura H, Kubo T, Hisa Y, Ibata Y. (1998). Neuron-glia interaction in the suprachiasmatic nucleus: a double labeling light and electron microscopic immunocytochemical study in the rat. Brain Res. Bull. 45:281–287.
  • Terrien J, Zizzari P, Epelbaum J, Perret M, Aujard F. (2009). Daily rhythms of core temperature and locomotor activity indicate different adaptive strategies to cold exposure in adult and aged mouse lemurs acclimated to a summer-like photoperiod. Chronobiol. Int. 26:838–853.
  • Tsukahara S, Tanaka S, Ishida K, Hoshi N, Kitagawa H. (2005). Age-related change and its sex differences in histoarchitecture of the hypothalamic suprachiasmatic nucleus of F344/N rats. Exp. Gerontol. 40:147–155.
  • Turturro A, Duffy P, Hass B, Kodell R, Hart R. (2002). Survival characteristics and age-adjusted disease incidences in C57BL/6 mice fed a commonly used cereal-based diet modulated by dietary restriction. J. Gerontol. A Biol. Sci. Med. Sci. 57:379–389.
  • Valentinuzzi VS, Scarbrough K, Takahashi JS, Turek FW. (1997). Effects of aging on the circadian rhythms of wheel-running activity in C57BL/6 mice. Am. J. Physiol. 273:R1957–R1964.
  • van den Pol AN. (1980). The hypothalamic suprachiasmatic nucleus of the rat: intrinsic anatomy. J. Comp. Neurol. 191:661–702.
  • van den Pol AN, Finkbeiner SM, Cornell-Bell AH. (1992). Calcium excitability and oscillations in suprachiasmatic nucleus neurons and glia in vitro. J. Neurosci. 12:2648–2664.
  • Van Esseveldt LKE, Lehman MN, Boer GJ. (2000). The suprachiasmatic nucleus and the circadian time-keeping system revisited. Brain Res. Rev. 33:34–77.
  • Van Someren EJ. Circadian and sleep disturbances in the elderly. (2000). Exp. Gerontol. 35:1229–1237.
  • Weinert D. (2000). Age-dependent changes of the circadian system. Chronobiol. Int. 17:261–283.
  • West MJ. (1993). New stereological methods for counting neurons. Neurobiol. Aging 14:275–285.
  • West MJ, Slomianka L, Gundersen HJ. (1991). Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat. Rec. 231:482–497.
  • Wu Y-H, Swaab DF. (2007). Disturbance and strategies for reactivation of the circadian rhythm system in aging and Alzheimer's disease. Sleep Med. 8:623–636.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.