Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 27, 2010 - Issue 8
132
Views
19
CrossRef citations to date
0
Altmetric
Research Article

INTERNAL TEMPORAL ORDER IN THE CIRCADIAN SYSTEM OF A DUAL-PHASING RODENT, THE OCTODON DEGUS

, , , &
Pages 1564-1579 | Received 10 Feb 2010, Accepted 10 Jun 2010, Published online: 20 Sep 2010

REFERENCES

  • Blanchong JA, McElhinny TL, Mahoney MM, Smale L. (1999). Nocturnal and diurnal rhythms in the unstriped Nile rat, Arvicanthis niloticus. J. Biol. Rhythms 14:364–377.
  • Castillo-Ruiz A, Nixon JP, Smale L, Nunez AA. (2010). Neural activation in arousal and reward areas of the brain in day-active and night-active grass rats. Neuroscience 165:337–349.
  • Challet E. (2007). Minireview: Entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology 148:5648–5655.
  • Cho K. (2001). Chronic jet lag produces temporal lobe atrophy and spatial cognitive deficits. Nat. Neurosci. 4:568–569.
  • Cohen R, Kronfeld-Schor N. (2006). Individual variability and photic entrainment of circadian rhythms in golden spiny mice. Physiol. Behav. 87:563–574.
  • Cohen R, Smale L, Kronfeld-Schor N. (2009). Plasticity of circadian activity and body temperature rhythms in golden spiny mice. Chronobiol. Int. 26:430–446.
  • Cuesta M, Clesse D, Pévet P, Challet E. (2009). From daily behavior to hormonal and neurotransmitters rhythms: comparison between diurnal and nocturnal rat species. Horm. Behav. 55:338–347.
  • Davidson AJ, Sellix MT, Daniel J, Yamazaki S, Menaker M, Block GD. (2006). Chronic jet-lag increases mortality in aged mice. Curr. Biol. 16:R914–R916.
  • Dunlap JC, Loros JJ, DeCoursey PJ. (2004). Chronobiology. Biological timekeeping. Sunderland, MA: Sinauer, 382 pp.
  • Filipski E, Delaunay F, King VM, Wu MW, Claustrat B, Gréchez-Cassiau A, Guettier C, Hastings MH, Levi F. (2004). Effects of chronic jet lag on tumor progression in mice. Cancer Res. 64:7879–7885.
  • Fulk GW. (1976). Notes on the activity, reproduction, and social behavior of Octodon degus. J. Mammal. 57:495–505.
  • García-Allegue R, Lax P, Madariaga AM, Madrid JA. (1999). Locomotor and feeding activity rhythms in a light-entrained diurnal rodent, Octodon degus. Am. J. Physiol. 277:R523–R531.
  • García-Rodriguez T, Ferrer M, Recio F, Castroviejo J. (1987). Circadian rhythms of determined blood chemistry values in buzzards and eagle owls. Comp. Biochem. Physiol. 88:663–669.
  • Halberg F, Lubanovic WA, Sothern RB, Brockway B, Powell EW, Pasley JN, Scheving LE. (1979). Nomifensine chronopharmacology, schedule-shifts and circadian temperature rhythms in di-suprachiasmatically lesioned rats: modelling emotional chronopathology and chronotherapy. Chronobiologia 6:405–424.
  • Haus E. (1996). Biologic rhythms in hematology. Pathol. Biol. 44:618–630.
  • Haus E, Lakatua DJ, Swoyer J, Sackett-Ludeen L. (1983). Chronobiology in haematology and immunology. Am. J. Anat. 168:467–517.
  • Howell MJ, Schenck CH, Crow SJ. (2009). A review of nighttime eating disorders. Sleep Med. Rev. 13:23–34.
  • Kas MJH, Edgar DM. (1999). A nonphotic stimulus inverts the diurnal-nocturnal phase in Octodon degus. J. Neurosci. 19:328–333.
  • Lee SJ, Liu T, Chattoraj A, Zhang SL, Wang L, Lee TM, Wang MM, Borjigin J. (2009). Posttranscriptional regulation of pineal melatonin synthesis in Octodon degus. J. Pineal Res. 47:75–81.
  • Levy O, Dayan T, Kronfeld-Schor N. (2007). The relationship between the golden spiny mouse circadian system and its diurnal activity: an experimental field enclosures and laboratory study. Chronobiol. Int. 24:599–613.
  • Mahoney MM, Nunez AA, Smale L. (2000). Calbindin and Fos within the suprachiasmatic nucleus and the adjacent hypothalamus of Arvicanthis niloticus and Rattus norvegicus. Neuroscience 99:565–575.
  • Moore-Ede MC, Kass DA, Herd JA. (1977). Transient circadian internal desynchronization after light-dark phase shift in monkeys. Am. J. Physiol. 232:R31–R37.
  • Murphy JC, Niemi SM, Hewes KM, Zink M, Fox JG. (1978). Hematologic and serum protein reference values of the Octodon degus. Am. J. Vet. Res. 39:713–715.
  • Nixon JP, Smale L. (2004). Individual differences in wheel-running rhythms are related to temporal and spatial patterns of activation of orexin A and B cells in a diurnal rodent (Arvicanthis niloticus). Neuroscience 127:25–34.
  • Nunez AA, Bult A, McElhinny TL, Smale L. (1999). Daily rhythms of Fos expression in hypothalamic targets of the suprachiasmatic nucleus in diurnal and nocturnal rodents. J. Biol. Rhythms 14:300–306.
  • Ohkura N, Oishi K, Sekine Y, Atsumi G, Ishida N, Matsuda J, Horie S. (2007). Comparative study of circadian variation in numbers of peripheral blood cells among mouse strains: unique feature of C3H/HeN mice. Biol. Pharm. Bull. 30:1177–1180.
  • Oishi K, Ohkura N, Kadota K, Kasamatsu M, Shibusawa K, Matsuda J, Machida K, Horie S, Ishida N. (2006). Clock mutation affects circadian regulation of circulating blood cells. J. Circadian Rhythms 2:1–13.
  • Opazo JC, Soto-Gamboa M, Bozinovic F. (2004). Blood glucose concentration in caviomorph rodents. Com. Biochem. Physiol. A Mol. Integr. Physiol. 137:57–64.
  • Oster H, Avivi A, Joel A, Albrecht U, Nevo E. (2002). A switch from diurnal to nocturnal activity in S. ehrenbergi is accompanied by an uncoupling of light input and the circadian clock. Curr. Biol. 12:1919–1922.
  • Penev PD, Kolker, DE, Zee PC, Turek, FW. (1998). Chronic circadian desynchronization decreases the survival of animals with cardiomyopathic heart disease. Am. J. Physiol. Heart. Circ. Physiol. 275:2334–2337.
  • Piccione G, Caola G, Refinetti R. (2005). Temporal relationships of 21 physiological variables in horse and sheep. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 142:389–396.
  • Piccione G, Caola G, Refinetti R. (2007). Daily rhythms of liver-function indicators in rabbits. J. Physiol. Sci. 57:101–105.
  • Portaluppi F, Touitou Y, Smolensky MH. (2008). Ethical and methodological standards for laboratory and medical biological rhythm research. Chronobiol. Int. 25:999–1016.
  • Refinetti R. (1999). Relationship between the daily rhythms of locomotor activity and body temperature in eight mammalian species. Am. J. Physiol. 277:R1493–R1500.
  • Refinetti R. (2006). Variability of diurnality in laboratory rodents. J. Comp. Physiol. A 192:701–714.
  • Reiter RJ. (1991). Melatonin: the chemical expression of darkness. Mol. Cell. Endocrinol. 79:153–158.
  • Sánchez-Vázquez FJ, Madrid JA, Zamora S. (1995). Circadian rhythms of feeding activity in sea bass, Dicentrarchus labrax L.: dual phasing capacity of diel demand-feeding pattern. J. Biol. Rhythms 10:256–266.
  • Sánchez-Vázquez FJ, Madrid JA, Zamora S, Iigo M, Tabata M. (1996). Demand feeding and locomotor circadian rhythm in the goldfish, Carassius auratus: dual and independent phasing. Physiol. Behav. 60:665–674.
  • Saper CB, Lu J, Chou TC, Gooley J. (2005). The hypothalamic integrator for circadian rhythms. Trends Neurosci. 28:152–157.
  • Schwartz WJ, Reppert SM, Eagan SM, Moore-Ede MC. (1983). In vivo metabolic activity of the suprachiasmatic nuclei: a comparative study. Brain Res. 274:184–187.
  • Smale L, Castleberry C, Nunez AA. (2001a). Fos rhythms in the hypothalamus of Rattus and Arvicanthis that exhibit nocturnal and diurnal patterns of rhythmicity. Brain Res. 899:101–105.
  • Smale L, McElhinny T, Nixon J, Gubik B, Rose S. (2001b). Patterns of wheel running are related to Fos expression in neuropeptide-Y-containing neurons in the intergeniculate leaflet of Arvicanthis niloticus. J. Biol. Rhythms 16:163–172.
  • Smale L, Lee T, Nunez AA. (2003). Mammalian diurnality: some facts and gaps. J. Biol. Rhythms 18:356–366.
  • Smale L, Nunez AA, Schwartz MD. (2008). Rhythms in a diurnal brain. Biol. Rhythm Res. 39:305–318.
  • Vivanco P, Ortiz V, Rol MA, Madrid JA. (2007). Looking for the keys to diurnality downstream from the circadian clock: role of melatonin in a dual-phasing rodent, Octodon degus. J. Pineal Res. 42:280–290.
  • Vivanco P, Rol MA, Madrid JA. (2009). Two steady-entrainment phases and graded masking effects by light generate different circadian chronotypes in Octodon degus. Chronobiol. Int. 26:219–241.
  • Vivanco P, Rol MA, Madrid JA. (2010). Temperature cycles trigger nocturnalism in the diurnal homeotherm Octodon degus. Chronobiol. Int 27:517–534.
  • Vosko AM, Hagenauer MH, Hummer DL, Lee TM. (2009) Period gene expression in the diurnal degu (Octodon degus) differs from the nocturnal laboratory rat (Rattus norvegicus). Am. J. Physiol. Regul. Integr. Comp. Physiol. 296:R353–R361.
  • Waterhouse J, DeCoursey PJ. (2004). The relevance of circadian rhythms for human welfare. In Dunlap JC, Loros JJ, DeCoursey PJ (eds.). Chronobiology. Biological timekeeping. Sunderland, MA: Sinauer, pp. 325–356.
  • Wehr TA. (1991). The durations of human melatonin secretion and sleep respond to changes in daylength (photoperiod). J. Clin. Endocrinol. Metab. 73:1276–1280.
  • Weinert D, Weinandy R, Gattermann R. (2007). Photic and non-photic effects on the daily activity pattern of Mongolian gerbils. Physiol. Behav. 90:325–333.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.