Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 27, 2010 - Issue 9-10
350
Views
27
CrossRef citations to date
0
Altmetric
Research Article

DIURNAL EXPRESSION OF CLOCK GENES IN PINEAL GLAND AND BRAIN AND PLASMA LEVELS OF MELATONIN AND CORTISOL IN ATLANTIC SALMON PARR AND SMOLTS

, &
Pages 1697-1714 | Received 19 Apr 2010, Accepted 27 Jul 2010, Published online: 25 Oct 2010

REFERENCES

  • Antle MC, Silver R. (2005). Orchestrating time: arrangements of the brain circadian clock. Trends Neurosci. 28:145–151.
  • Balsalobre A. (2002). Clock genes in mammalian peripheral tissues. Cell Tissue Res. 309:193–199.
  • Balsalobre A, Damiola F, Schibler U. (1998). A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93:929–937.
  • Barton BA, Iwama GK. (1991) Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu. Rev. Fish Dis. 1:3–26.
  • Begay V, Falcon J, Cahill GM, Klein DC, Coon SL. (1998). Transcripts encoding two melatonin synthesis enzymes in the teleost pineal organ: circadian regulation in pike and zebrafish, but not in trout. Endocrinology 139:905–912.
  • Benito J, Zheng H, Ng FS, Hardin PE. (2007). Transcriptional feedback loop regulation, function, and ontogeny in Drosophila. Cold Spring Harb. Symp. Quant. Biol. 72:437–444.
  • Bjornsson BT, Hemre GI, Bjornevik M, Hansen T. (2000). Photoperiod regulation of plasma growth hormone levels during induced smoltification of underyearling Atlantic salmon. Gen. Comp. Endocrinol. 119:17–25.
  • Bromage N, Porter M, Randall C. (2001). The environmental regulation of maturation in farmed finfish with special reference to the role of photoperiod and melatonin. Aquaculture 197:63–98.
  • Cahill GM. (2002). Clock mechanisms in zebrafish. Cell Tissue Res. 309:27–34.
  • Dardente H, Cermakian N. (2007). Molecular circadian rhythms in central and peripheral clocks in mammals. Chronobiol. Int. 24:195–213.
  • Davie A, Minghetti M, Migaud H. (2009). Seasonal variations in clock-gene expression in Atlantic salmon (Salmo salar). Chronobiol. Int. 26:379–95.
  • Duguay D, Cermakian N. (2009). The crosstalk between physiology and circadian clock proteins. Chronobiol. Int. 26:1479–513.
  • Dunlap JC. (1999). Molecular bases for circadian clocks. Cell 96:271–90.
  • Ebbesson LOE, Ebbesson SOE, Nilsen TO, Stefansson SO, Holmqvist B. (2007). Exposure to continuous light disrupts retinal innervation of the preoptic nucleus during parr-smolt transformation in Atlantic salmon. Aquaculture 273:345–349.
  • Ebbesson LO, Bjornsson BT, Ekstrom P, Stefansson SO. (2008). Daily endocrine profiles in parr and smolt Atlantic salmon. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 151:698–704.
  • Eide EJ, Vielhaber EL, Hinz WA, Virshup DM. (2002). The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase Iepsilon. J. Biol. Chem. 277:17248–17254.
  • Ekstrom P, Meissl H. (1997). The pineal organ of teleost fishes. Rev. Fish Biol. Fish 48:1011–1013.
  • Eliason EJ, Kiessling A, Karlsson A, Djordjevic B, Farrell AP. (2007). Validation of the hepatic portal vein cannulation techniques using Atlantic salmon Salmo salar L. J. Fish Biol. 71:290–297.
  • Endal HP, Taranger GL, Stefansson SO, Hansen T. (2000). Effects of continuous additional light on growth and sexual maturity in Atlantic salmon, Salmo salar, reared in sea cages. Aquaculture 191:337–349.
  • Espelid S, Lokken GB, Steiro K, Bøgwald J. (1996). Effects of cortisol and stress on the immune system in Atlantic salmon (Salmo salar). Fish Shellfish Immunol. 6:95–110.
  • Falcon J, Migaud H, Munoz-Cueto JA, Carrillo M. (2010). Current knowledge on the melatonin system in teleost fish. Gen. Comp. Endocrinol. 165:469–482.
  • Farmer GJ, Ritter JA, Ashfield D. (1978). Seawater adaptation and parr-smolt transformation of juvenile Atlantic salmon, Salmo-Salar. J. Fish. Res. Board Can. 35:93–100.
  • Fjelldal PG, Grotmol S, Kryvi H, Gjerdet NR, Taranger GL, Hansen T, Porter MJ, Totland GK. (2004). Pinealectomy induces malformation of the spine and reduces the mechanical strength of the vertebrae in Atlantic salmon, Salmo salar. J. Pineal Res. 36:132–139.
  • Fjelldal PG, Nordgarden U, Berg A, Grotmol S, Totland GK, Wargelius A, Hansen T. (2005). Vertebrae of the trunk and tail display different growth rates in response to photoperiod in Atlantic salmon, Salmo salar L., post-smolts. Aquaculture 250:516–524.
  • Folmar LC, Dickhoff WW. (1980). The parr-smolt transformation (smoltification) and seawater adaptation in salmonids—a review of selected literature. Aquaculture 21:1–37.
  • Gamperl AK, Vijayan MM, Boutilier RG. (1994). Experimental control of stress hormone levels in fishes—techniques and applications. Rev. Fish Biol. Fish 4:215–255.
  • Hirayama J, Kaneko M, Cardone L, Cahill G, Sassone-Corsi P. (2005). Analysis of circadian rhythms in zebrafish. Methods Enzymol. 393:186–204.
  • Hoar WS. (1988). The physiology of smolting. In Hoar WS, Randall DJ (eds.). Fish physiology. Fish Physiol. 11B. Academic Press, NY:275–343.
  • Huang TS, Grodeland G, Sleire L, Wang MY, Kvalheim G, Laerum OD. (2009). Induction of circadian rhythm in cultured human mesenchymal stem cells by serum shock and cAMP analogs in vitro. Chronobiol. Int. 26:242–57.
  • Iigo M, Hara M, Ohtani-Kaneko R, Hirata K, Tabata M, Aida K. (1997). Photic and circadian regulations of melatonin rhythms in fishes. Biol. Signals 6:225–232.
  • Iigo M, Abe T, Kambayashi S, Oikawa K, Masuda T, Mizusawa K, Kitamura S, Azuma T, Takagi Y, Aida K, Yanagisawa T. (2007). Lack of circadian regulation of in vitro melatonin release from the pineal organ of salmonid teleosts. Gen. Comp. Endocrinol. 154:91–97.
  • Johnston IA, Manthri S, Smart A, Campbell P, Nickell D, Alderson R. (2003). Plasticity of muscle fibre number in seawater stages of Atlantic salmon in response to photoperiod manipulation. J. Exp. Biol. 206:3425–3435.
  • Kobayashi Y, Ishikawa T, Hirayama J, Daiyasu H, Kanai S, Toh H, Fukuda I, Tsujimura T, Terada N, Kamei Y, Yuba S, Iwai S, Todo T. (2000). Molecular analysis of zebrafish photolyase/cryptochrome family: two types of cryptochromes present in zebrafish. Genes Cells 5:725–38.
  • Koukkari WL, Sothern RB. (2006). Introducing biological rhythms. New York: Springer.
  • Krakenes R, Hansen T, Stefansson SO, Taranger GL. (1991). Continuous light increases growth-rate of Atlantic salmon (Salmo salar L.) postsmolts in sea cages. Aquaculture 95:281–287.
  • Lahiri K, Vallone D, Gondi SB, Santoriello C, Dickmeis T, Foulkes NS. (2005). Temperature regulates transcription in the zebrafish circadian clock. PLoS Biol. 3:pe351.
  • Li YY, Takei Y. (2003). Ambient salinity-dependent effects of homologous natriuretic peptides (ANP, VNP, and CNP) on plasma cortisol level in the eel. Gen. Comp. Endocrinol. 130:317–323.
  • Lowrey PL, Takahashi JS. (2000). Genetics of the mammalian circadian system: photic entrainment, circadian pacemaker mechanisms, and posttranslational regulation. Annu. Rev. Genet. 34:533–562.
  • Mayer I. (2000). Effect of long-term pinealectomy on growth and precocious maturation in Atlantic salmon, Salmo salar parr. Aquat. Liv. Res. 13:139–144.
  • McCormick SD. (2001). Endocrine control of osmoregulation in teleost fish. Am. Zool. 41:781–794.
  • McCormick SD, Saunders RL, Henderson EB, Harmon PR. (1987). Photoperiod control of parr-smolt transformation in Atlantic salmon (Salmo-Salar)—changes in salinity tolerance, gill Na+,K+-ATPase activity, and plasma thyroid-hormones. Can. J. Fish. Aquat. Sci. 44:1462–1468.
  • McCormick SD, Hansen LP, Quinn TP, Saunders RL. (1998). Movement, migration, and smolting of Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 55:77–92.
  • Mendez-Ferrer S, Lucas D, Battista M, Frenette PS. (2008). Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452:442–447.
  • Migaud H, Davie A, Chavez CCM, Al-Khamees S. (2007). Evidence for differential photic regulation of pineal melatonin synthesis in teleosts. J. Pineal Res. 43:327–335.
  • Migaud H, Davie A, Taylor JF. (2010). Current knowledge on the photoneuroendocrine regulation of reproduction in temperate fish species. J. Fish Biol. 76:27–68.
  • Nordgarden U, Oppedal F, Taranger GL, Hemre GI, Hansen T. (2003a). Seasonally changing metabolism in Atlantic salmon (Salmo salar L.) I—growth and feed conversion ratio. Aquac. Nutr. 9:287–293.
  • Nordgarden U, Torstensen BE, Froyland L, Hansen T, Hemre GI. (2003b). Seasonally changing metabolism in Atlantic salmon (Salmo salar L.) II—beta-oxidation capacity and fatty acid composition in muscle tissues and plasma lipoproteins. Aquac. Nutr. 9:295–303.
  • Nordgarden U, Hansen T, Hemre GI, Sundby A, Bjornsson BT. (2005). Endocrine growth regulation of adult Atlantic salmon in seawater: the effects of light regime on plasma growth hormone, insulin-like growth factor-I, and insulin levels. Aquaculture 250:862–871.
  • Oppedal F, Juell JE, Taranger GL, Hansen T. (2001). Artificial light and season affects vertical distribution and swimming behaviour of post-smolt Atlantic salmon in sea cages. J. Fish Biol. 58:1570–1584.
  • Pando MP, Pinchak AB, Cermakian N, Sassone-Corsi P. (2001). A cell-based system that recapitulates the dynamic light-dependent regulation of the vertebrate clock. Proc. Natl. Acad. Sci. U. S. A. 98:10178–10183.
  • Park JG, Park YJ, Sugama N, Kim SJ, Takemura A. (2007). Molecular cloning and daily variations of the Period gene in a reef fish Siganus guttatus. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 193:403–411.
  • Pavlidis M, Greenwood L, Paalavuo M, Molsa H, Laitinen JT. (1999). The effect of photoperiod on diel rhythms in serum melatonin, cortisol, glucose, and electrolytes in the common dentex, Dentex dentex. Gen. Comp. Endocrinol. 113:240–250.
  • Pickering AD, Pottinger TG. (1983). Seasonal and diel changes in plasma-cortisol levels of the brown trout, Salmo trutta L. Gen. Comp. Endocrinol. 49:232–239.
  • Portaluppi F, Touitou Y, Smolensky MH. (2008). Ethical and methodological standards for laboratory and medical biological rhythm research. Chronobiol. Int. 25:999–1016.
  • Pottinger TG, Carrick TR, Appleby A, Yeomans WE. (2000). High blood cortisol levels and low cortisol receptor affinity: is the Chub, Leuciscus cephalus, a cortisol-resistant teleost? Gen. Comp. Endocrinol. 120:108–117.
  • Ralph MR, Foster RG, Davis FC, Menaker M. (1990). Transplanted suprachiasmatic nucleus determines circadian period. Science 247:975–978.
  • Randall CF, Bromage NR, Thorpe JE, Miles MS, Muir JS. (1995). Melatonin rhythms in Atlantic salmon (Salmo salar) maintained under natural and out-of-phase photoperiods. Gen. Comp. Endocrinol. 98:73–86.
  • Rousseau K, Atcha Z, Loudon AS. (2003). Leptin and seasonal mammals. J. Neuroendocrinol. 15:409–414.
  • Saunders RL, Henderson EB. (1988). Effects of constant day length on sexual-maturation and growth of Atlantic salmon (Salmo-Salar) parr. Can. J. Fish. Aquat. Sci. 45:60–64.
  • Simonneaux V, Poirel VJ, Garidou ML, Nguyen D, Diaz-Rodriguez E, Pevet P. (2004). Daily rhythm and regulation of clock gene expression in the rat pineal gland. Mol. Brain Res. 120:164–172.
  • Stefansson SO, Bjornsson BT, Hansen T, Haux C, Taranger GL, Saunders RL. (1991). Growth, parr-smolt transformation, and changes in growth-hormone of Atlantic salmon (Salmo-Salar) reared under different photoperiods. Can. J. Fish. Aquat. Sci. 48:2100–2108.
  • Stefansson SO, Nilsen TO, Ebbesson LOE, Wargelius A, Madsen SS, Bjornsson BT, McCormick SD. (2007). Molecular mechanisms of continuous light inhibition of Atlantic salmon parr-smolt transformation. Aquaculture 273:235–245.
  • Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, Weitz CJ. (2002). Extensive and divergent circadian gene expression in liver and heart. Nature 417:78–83.
  • Taranger GL, Haux C, Stefansson SO, Bjornsson BT, Walther BT, Hansen T. (1998). Abrupt changes in photoperiod affect age at maturity, timing of ovulation and plasma testosterone and oestradiol-17 beta profiles in Atlantic salmon, Salmo salar. Aquaculture 162:85–98.
  • Taylor JF, Migaud H, Porter MJR, Bromage NR. (2005). Photoperiod influences growth rate and plasma insulin-like growth factor-I levels in juvenile rainbow trout, Oncorhynchus mykiss. Gen. Comp. Endocrinol. 142:169–185.
  • Thorpe JE, McConway MG, Miles MS, Muir JS. (1987). Diel and seasonal changes in resting plasma cortisol levels in juvenile Atlantic salmon, Salmo salar L. Gen. Comp. Endocrinol. 65:19–22.
  • Tomita T, Miyazaki K, Onishi Y, Honda S, Ishida N, Oishi K. (2010). Conserved amino acid residues in C-terminus of PERIOD 2 are involved in interaction with CRYPTOCHROME 1. Biochim. Biophys. Acta 1803:492–498.
  • Vallone D, Gondi SB, Whitmore D, Foulkes NS. (2004). E-box function in a period gene repressed by light. Proc. Natl. Acad. Sci. U. S. A. 101:4106–4111.
  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3: RESEARCH0034.
  • Velarde E, Haque R, Iuvone PM, Azpeleta C, Alonso-Gomez AL, Delgado MJ. (2009). Circadian clock genes of goldfish, Carassius auratus: cDNA cloning and rhythmic expression of Period and Cryptochrome transcripts in retina, liver, and gut. J. Biol. Rhythms 24:104–113.
  • Wang H. (2008). Comparative analysis of Period genes in teleost fish genomes. J. Mol. Evol. 67:29–40.
  • Wiik R, Andersen K, Uglenes I, Egidius E. (1989). Cortisol-induced increase in susceptibility of Atlantic salmon, Salmo salar, to Vibrio salmonicida, together with effects on the blood cell pattern. Aquaculture 83:201–215.
  • Ziv L, Gothilf Y. (2006). Period2 expression pattern and its role in the development of the pineal circadian clock in zebrafish. Chronobiol. Int. 23:101–112.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.