Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 28, 2011 - Issue 7
284
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Loss of dexras1 Alters Nonphotic Circadian Phase Shifts and Reveals a Role for the Intergeniculate Leaflet (IGL) in Gene-Targeted Mice

, , &
Pages 553-562 | Received 28 Jan 2011, Accepted 15 May 2011, Published online: 11 Aug 2011

REFERENCES

  • Abrahamson EE, Moore RY. (2001). The posterior hypothalamic area: chemoarchitecture and afferent connections. Brain Res. 899:1–22.
  • Aschoff J. (1965). Response curves in circadian periodicity. In J Achoff (ed.). Circadian clocks. Amsterdam: North-Holland, pp. 95–111.
  • Banjanin S, Mrosovsky N. (2000). Preferences of mice, Mus musculus, for different types of running wheel. Lab. Anim. 34:313–318.
  • Beaule C, Arvanitogiannis A, Amir S. (2001). Light suppresses Fos expression in the shell region of the suprachiasmatic nucleus at dusk and dawn: implications for photic entrainment of circadian rhythms. Neuroscience 106:249–254.
  • Biello SM, Janik D, Mrosovsky N. (1994). Neuropeptide Y and behaviorally induced phase shifts. Neuroscience 62:273–279.
  • Bina KG, Rusak B. (1996). Muscarinic receptors mediate carbachol-induced phase shifts of circadian activity rhythms in Syrian hamsters. Brain Res. 743:202–211.
  • Bina KG, Rusak B, Semba K. (1993). Localization of cholinergic neurons in the forebrain and brainstem that project to the suprachiasmatic nucleus of the hypothalamus in rat. J. Comp. Neurol. 335:295–307.
  • Bobrzynska KJ, Mrosovsky N. (1998). Phase shifting by novelty-induced running: activity dose-response curves at different circadian times. J. Comp. Physiol. A 182:251–258.
  • Buchanan GF, Gillette MU. (2005). New light on an old paradox: site-dependent effects of carbachol on circadian rhythms. Exp. Neurol. 193:489–496.
  • Cain SW, Verwey M, Szybowska M, Ralph MR, Yeomans JS. (2007). Carbachol injections into the intergeniculate leaflet induce nonphotic phase shifts. Brain Res. 1177:59–65.
  • Card JP, Moore RY. (1989). Organization of lateral geniculate-hypothalamic connections in the rat. J. Comp. Neurol. 284:135–147.
  • Castel M, Belenky M, Cohen S, Ottersen OP, Storm-Mathisen J. (1993). Glutamate-like immunoreactivity in retinal terminals of the mouse suprachiasmatic nucleus. Eur. J. Neurosci. 5:368–381.
  • Castillo-Ruiz A, Nunez AA. (2007). Cholinergic projections to the suprachiasmatic nucleus and lower subparaventricular zone of diurnal and nocturnal rodents. Brain Res. 1151:91–101.
  • Chen D, Buchanan GF, Ding JM, Hannibal J, Gillette MU. (1999). Pituitary adenylyl cyclase-activating peptide: a pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock. Proc. Natl. Acad. Sci. U. S. A. 96:13468–13473.
  • Cheng HY, Obrietan K, Cain SW, Lee BY, Agostino PV, Joza NA, Harrington ME, Ralph MR, Penninger JM. (2004). Dexras1 potentiates photic and suppresses nonphotic responses of the circadian clock. Neuron 43:715–728.
  • Cheng HY, Dziema H, Papp J, Mathur DP, Koletar M, Ralph MR, Penninger JM, Obrietan K. (2006). The molecular gatekeeper Dexras1 sculpts the photic responsiveness of the mammalian circadian clock. J. Neurosci. 26:12984–12995.
  • Cismowski MJ, Ma C, Ribas C, Xie X, Spruyt M, Lizano JS, Lanier SM, Duzic E. (2000). Activation of heterotrimeric G-protein signaling by a ras-related protein. Implications for signal integration. J. Biol. Chem. 275:23421–23424.
  • Cismowski MJ, Takesono A, Bernard ML, Duzic E, Lanier SM. (2001). Receptor-independent activators of heterotrimeric G-proteins. Life Sci. 68:2301–2308.
  • Coogan AN, Piggins HD. (2005). Dark pulse suppression of P-ERK and c-Fos in the hamster suprachiasmatic nuclei. Eur. J. Neurosci. 22:158–168.
  • Daan S, Pittendrigh CS. (1976). A functional analysis of circadian pacemakers in the nocturnal rodents II. The variability of phase response curves. J. Comp. Physiol. 106:253–266.
  • Dallmann R, Mrosovsky N. (2007). Non-photic phase resetting of Dexras1 deficient mice: a more complicated story. Behav. Brain Res. 180:197–202.
  • Edelstein K, Amir S. (1999). The role of the intergeniculate leaflet in entrainment of circadian rhythms to a skeleton photoperiod. J. Neurosci. 19:372–380.
  • Fang M, Jaffrey SR, Sawa A, Ye K, Luo X, Snyder SH. (2000). Dexras1: a G protein specifically coupled to neuronal nitric oxide synthase via CAPON. Neuron 28:183–193.
  • Golombek DA, Agostino PV, Plano SA, Ferreyra GA. (2004). Signaling in the mammalian circadian clock: the NO/cGMP pathway. Neurochem. Int. 45:929–936.
  • Graham TE, Qiao Z, Dorin RI. (2004). Dexras1 inhibits adenylyl cyclase. Biochem. Biophys. Res. Commun. 316:307–312.
  • Hannibal J, Ding JM, Chen D, Fahrenkrug J, Larsen PJ, Gillette MU, Mikkelsen JD. (1997). Pituitary adenylate cyclase-activating peptide (PACAP) in the retinohypothalamic tract: a potential daytime regulator of the biological clock. J. Neurosci. 17:2637–2644.
  • Harrington ME, Nance DM, Rusak B. (1985). Neuropeptide Y immunoreactivity in the hamster geniculo-suprachiasmatic tract. Brain Res. Bull. 15:465–472.
  • Harrington ME, Nance DM, Rusak B. (1987). Double-labeling of neuropeptide Y-immunoreactive neurons which project from the geniculate to the suprachiasmatic nuclei. Brain Res. 410:275–282.
  • Horowitz SS, Blanchard JH, Morin LP. (2004). Intergeniculate leaflet and ventral lateral geniculate nucleus afferent connections: an anatomical substrate for functional input from the vestibulo-visuomotor system. J. Comp. Neurol. 474:227–245.
  • Janik D, Mikkelsen JD, Mrosovsky N. (1995). Cellular colocalization of Fos and neuropeptide Y in the intergeniculate leaflet after nonphotic phase-shifting events. Brain Res. 698:137–145.
  • Kuroda H, Fukushima M, Nakai M, Katayama T, Murakami N. (1997). Daily wheel running activity modifies the period of free-running rhythm in rats via intergeniculate leaflet. Physiol. Behav. 61:633–637.
  • Lee HS, Nelms JL, Nguyen M, Silver R, Lehman MN. (2003). The eye is necessary for a circadian rhythm in the suprachiasmatic nucleus. Nat. Neurosci. 6:111–112.
  • Lewandowski MH, Usarek A. (2002). Effects of intergeniculate leaflet lesions on circadian rhythms in the mouse. Behav. Brain Res. 128:13–17.
  • Liu C, Gillette MU. (1996). Cholinergic regulation of the suprachiasmatic nucleus circadian rhythm via a muscarinic mechanism at night. J. Neurosci. 16:744–751.
  • Liu C, Ding JM, Faiman LE, Gillette MU. (1997). Coupling of muscarinic cholinergic receptors and cGMP in nocturnal regulation of the suprachiasmatic circadian clock. J. Neurosci. 17:659–666.
  • Maywood ES, Smith E, Hall SJ, Hastings MH. (1997). A thalamic contribution to arousal-induced, non-photic entrainment of the circadian clock of the Syrian hamster. Eur. J. Neurosci. 9:1739–1747.
  • Mead S, Ebling FJ, Maywood ES, Humby T, Herbert J, Hastings MH. (1992). A nonphotic stimulus causes instantaneous phase advances of the light-entrainable circadian oscillator of the Syrian hamster but does not induce the expression of cFos in the suprachiasmatic nuclei. J. Neurosci. 12:2516–2522.
  • Mikkelsen JD, Vrang N, Mrosovsky . (1998). Expression of Fos in the circadian system following nonphotic stimulation. Brain Res. Bull. 47:367–376.
  • Mintz EM, Marvel CL, Gillespie CF, Price KM, Albers HE. (1999). Activation of NMDA receptors in the suprachiasmatic nucleus produces light-like phase shifts of the circadian clock in vivo. J. Neurosci. 19:5124–5130.
  • Mistlberger RE, Rusak B. (1986). Carbachol phase shifts circadian activity rhythms in ovariectomized rats. Neurosci. Lett. 72:357–362.
  • Moore RY, Lenn NJ. (1972). A retinohypothalamic projection in the rat. J. Comp. Neurol. 146:1–14.
  • Moore RY, Speh JC, Leak RK. (2002). Suprachiasmatic nucleus organization. Cell Tissue Res. 309:89–98.
  • Mrosovsky N. (1996). Methods of measuring phase shifts: why I continue to use an Aschoff type II procedure despite the skepticism of referees. Chronobiol. Int. 13:387–392.
  • Muscat L, Morin LP. (2006). Intergeniculate leaflet: contributions to photic and non-photic responsiveness of the hamster circadian system. Neuroscience 140:305–320.
  • Nguyen CH, Watts VJ. (2005). Dexras1 blocks receptor-mediated heterologous sensitization of adenylyl cyclase 1. Biochem. Biophys. Res. Commun. 332:913–920.
  • Paxinos G, Franklin KBJ. (2001). The mouse brain in stereotaxic coordinates. 2nd ed. San Diego: Academic Press, Figures 33–39.
  • Pickard GE, Ralph MR, Menaker M. (1987). The intergeniculate leaflet partially mediates effects of light on circadian rhythms. J. Biol. Rhythms 2:85–88
  • Portaluppi F, Smolensky MH, Touitou Y. (2010). Ethics and methods for biological rhythm research on animals and human beings. Chronobiol. Int. 27:1911–1929.
  • Ralph MR, Foster RG, Davis FC, Menaker M. (1990). Transplanted suprachiasmatic nucleus determines circadian period. Science 247:975–978.
  • Rosenwasser AM, Dwyer SM. (2001). Circadian phase shifting: relationships between photic and nonphotic phase-response curves. Physiol. Behav. 73:175–183.
  • Rusak B, Meijer JH, Harrington ME. (1989). Hamster circadian rhythms are phase-shifted by electrical stimulation of the geniculo-hypothalamic tract. Brain Res. 493:283–291.
  • Serchov T, Heumann R. (2006). Constitutive activation of ras in neurons: implications for the regulation of the mammalian circadian clock. Chronobiol. Int. 23:191–200.
  • Stephan FK, Zucker I. (1972). Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Natl. Acad. Sci. U. S. A. 69:1583–1586.
  • Sumova A, Travnickova Z, Illnerova H. (2000). Spontaneous c-Fos rhythm in the rat suprachiasmatic nucleus: location and effect of photoperiod. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279:R2262–R2269.
  • Takahashi H, Umeda N, Tsutsumi Y, Fukumura R, Ohkaze H, Sujino M, van der Horst G, Yasui A, Inouye ST, Fujimori A, Ohhata T, Araki R, Abe M. (2003). Mouse dexamethasone-induced RAS protein 1 gene is expressed in a circadian rhythmic manner in the suprachiasmatic nucleus. Brain Res. Mol. Brain Res. 110:1–6.
  • Thankachan S, Rusak B. (2005). Juxtacellular recording/labeling analysis of physiological and anatomical characteristics of rat intergeniculate leaflet neurons. J. Neurosci. 25:9195–9204.
  • Vrang N, Mrosovsky N, Mikkelsen JD. (2003). Afferent projections to the hamster intergeniculate leaflet demonstrated by retrograde and anterograde tracing. Brain Res. Bull. 59:267–288.
  • Wee BE, Anderson KD, Kouchis NS, Turek FW. (1992). Administration of carbachol into the lateral ventricle and suprachiasmatic nucleus (SCN) produces dose-dependent phase shifts in the circadian rhythm of locomotor activity. Neurosci. Lett. 137:211–215.
  • Wickland C, Turek FW. (1994). Lesions of the thalamic intergeniculate leaflet block activity-induced phase shifts in the circadian activity rhythm of the golden hamster. Brain Res. 660:293–300.
  • Zatz M, Herkenham MA. (1981). Intraventricular carbachol mimics the phase-shifting effect of light on the circadian rhythm of wheel-running activity. Brain Res. 212:234–238.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.