Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 32, 2015 - Issue 4
324
Views
21
CrossRef citations to date
0
Altmetric
Original Article

Circadian rhythm of intraocular pressure in the adult rat

, &
Pages 513-523 | Received 21 Sep 2014, Accepted 12 Jan 2015, Published online: 23 Mar 2015

References

  • AGIS. (2000). The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. The AGIS Investigators. Am J Ophthalmol. 130:429–40
  • Ahmed F, Brown KM, Stephan DA, et al. (2004). Microarray analysis of changes in mRNA levels in the rat retina after experimental elevation of intraocular pressure. Invest Ophthalmol Vis Sci. 45:1247–58
  • Aihara M, Lindsey JD, Weinreb RN. (2003). Twenty-four-hour pattern of mouse intraocular pressure. Exp Eye Res. 77:681–6
  • Aschoff J. (1960). Exogenous and endogenous components in circadian rhythms. Cold Spring Harb Symp Quant Biol. 25:11–28
  • Berens P. (2009). CircStat: A Matlab toolbox for circular statistics. J Stat Softw. 31:1–21
  • Caprioli J, Coleman AL. (2008). Intraocular pressure fluctuation a risk factor for visual field progression at low intraocular pressures in the advanced glaucoma intervention study. Ophthalmology. 115:1123–9
  • Carpenter GA, Grossberg S. (1984). A neural theory of circadian rhythms: Aschoff's rule in diurnal and nocturnal mammals. Am J Physiol 247:R1067–82
  • Cornelissen, G. (2014). Cosinor-based rhythmometry. Theor Biol Med Model. 11:16
  • Danias J, Kontiola AI, Filippopoulos T, Mittag T. (2003). Method for the noninvasive measurement of intraocular pressure in mice. Invest Ophthalmol Vis Sci. 44:1138–41
  • David R, Zangwill L, Briscoe D, et al. (1992). Diurnal intraocular pressure variations: an analysis of 690 diurnal curves. Br J Ophthalmol. 76:280–3
  • De Smedt S, Mermoud A, Schnyder C. (2012). 24-Hour intraocular pressure fluctuation monitoring using an ocular telemetry sensor: Tolerability and functionality in healthy subjects. J Glaucoma. 21:539–44
  • Del Sole MJ, Sande PH, Bernades JM, et al. (2007). Circadian rhythm of intraocular pressure in cats. Vet Ophthalmol. 10:155–61
  • Depres-Brummer P, Levi F, Metzger G, Touitou Y. (1995). Light-induced suppression of the rat circadian system. Am J Physiol. 268:R1111–16
  • Downs JC, Burgoyne CF, Seigfreid WP, et al. (2011). 24-hour IOP telemetry in the nonhuman primate: Implant system performance and initial characterization of IOP at multiple timescales. Invest Ophthalmol Vis Sci. 52:7365–75
  • Eastman C, Rechtschaffen A. (1983). Circadian temperature and wake rhythms of rats exposed to prolonged continuous illumination. Physiol Behav. 31:417–27
  • Francis BA, Varma R, Chopra V, et al; Los Angeles Latino Eye Study. (2008). Intraocular pressure, central corneal thickness, and prevalence of open-angle glaucoma: The Los Angeles Latino Eye Study. Am J Ophthalmol. 146:741–6
  • Frishman LJ, Saszik S, Harwerth RS, et al. (2000). Effects of experimental glaucoma in macaques on the multifocal ERG. Multifocal ERG in laser-induced glaucoma. Doc Ophthalmol. 100:231–51
  • Halberg F, Tong YL, Johnson EA. (1967). Circadian system phase, an aspect of temporal morphology: Procedures and illustrative examples. In von Mayersbach H, ed. The cellular aspects of biorhythms. Berlin: Springer, pp. 20–48
  • Hartwick AT, Zhang X, Chauhan BC, Baldridge WH. (2005). Functional assessment of glutamate clearance mechanisms in a chronic rat glaucoma model using retinal ganglion cell calcium imaging. J Neurochem. 94:794–807
  • Harwerth RS, Crawford ML, Frishman LJ, et al. (2002). Visual field defects and neural losses from experimental glaucoma. Prog Retin Eye Res. 21:91–125
  • Harwerth RS, Wheat JL, Fredette MJ, Anderson DR. (2010). Linking structure and function in glaucoma. Prog Retin Eye Res. 29:249–71
  • Heijl A, Leske MC, Bengtsson B, et al. Early Manifest Glaucoma Trial. (2002). Reduction of intraocular pressure and glaucoma progression: Results from the Early Manifest Glaucoma Trial. Arch Ophthalmol. 120:1268–79
  • Honma KI, Hiroshige T. (1978). Endogenous ultradian rhythms in rats exposed to prolonged continuous light. Am J Physiol. 235:R250–6
  • Jia L, Cepurna WO, Johnson EC, Morrison JC. (2000). Effect of general anesthetics on IOP in rats with experimental aqueous outflow obstruction. Invest Ophthalmol Vis Sci. 41:3415–19
  • Kass MA, Heuer DK, Higginbotham EJ, et al. (2002). The Ocular Hypertension Treatment Study: A randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 120:701–13; discussion 829–30
  • Kontiola AI, Goldblum D, Mittag T, Danias J. (2001). The induction/impact tonometer: A new instrument to measure intraocular pressure in the rat. Exp Eye Res. 73:781–5
  • Li R, Liu JH. (2008). Telemetric monitoring of 24 h intraocular pressure in conscious and freely moving C57BL/6J and CBA/CaJ mice. Mol Vis. 14:745–9
  • Liu JH, Kripke DF, Hoffman RE, et al. (1998). Nocturnal elevation of intraocular pressure in young adults. Invest Ophthalmol Vis Sci. 39:2707–12
  • Liu JH, Kripke DF, Twa MD, et al. (1999). Twenty-four-hour pattern of intraocular pressure in the aging population. Invest Ophthalmol Vis Sci. 40:2912–17
  • Liu JH, Zhang X, Kripke DF, Weinreb RN. (2003). Twenty-four-hour intraocular pressure pattern associated with early glaucomatous changes. Invest Ophthalmol Vis Sci. 44: 1586–90
  • Lorenz K, Korb C, Herzog N, et al. (2013). Tolerability of 24-hour intraocular pressure monitoring of a pressure-sensitive contact lens. J Glaucoma. 22:311–16
  • Mansouri K, Medeiros FA, Tafreshi A, Weinreb RN. (2012). Continuous 24-hour monitoring of intraocular pressure patterns with a contact lens sensor: Safety, tolerability, and reproducibility in patients with glaucoma. Arch Ophthalmol. 130:1534–9
  • McLaren JW, Brubaker RF, FitzSimon JS. (1996). Continuous measurement of intraocular pressure in rabbits by telemetry. Invest Ophthalmol Vis Sci. 37:966–75
  • Melki S, Todani A, Cherfan G. (2014). An implantable intraocular pressure transducer: Initial safety outcomes. JAMA Ophthalmol. 132:1221–5
  • Mermoud A, Baerveldt G, Minckler DS, et al. (1994). Intraocular pressure in Lewis rats. Invest Ophthalmol Vis Sci. 35:2455–60
  • Moore CG, Johnson EC, Morrison JC. (1996). Circadian rhythm of intraocular pressure in the rat. Curr Eye Res. 15:185–91
  • Morrison JC, Jia L, Cepurna W, et al. (2009). Reliability and sensitivity of the TonoLab rebound tonometer in awake Brown Norway rats. Invest Ophthalmol Vis Sci. 50:2802–8
  • Morrison JC, Johnson EC, Cepurna W, and Jia L. (2005). Understanding mechanisms of pressure-induced optic nerve damage. Prog Retin Eye Res. 24:217–40
  • Morrison JC, Moore CG, Deppmeier LM, et al. (1997). A rat model of chronic pressure-induced optic nerve damage. Exp Eye Res. 64:85–96
  • Musch DC, Gillespie BW, Niziol LM, et al. (2011). Intraocular pressure control and long-term visual field loss in the Collaborative Initial Glaucoma Treatment Study. Ophthalmology. 118:1766–73
  • Nickells RW, Howell GR, Soto I, John SW. (2012). Under pressure: Cellular and molecular responses during glaucoma, a common neurodegeneration with axonopathy. Annu Rev Neurosci. 35:153–79
  • Nissirios N, Chanis R, Johnson E, et al. (2008). Comparison of anterior segment structures in two rat glaucoma models: An ultrasound biomicroscopic study. Invest Ophthalmol Vis Sci. 49:2478–82
  • Pang IH, Wang WH, Clark AF. (2005). Acute effects of glaucoma medications on rat intraocular pressure. Exp Eye Res. 80:207–14
  • Piccione G, Giannetto C, Fazio F, Giudice E. (2010). Influence of different artificial lighting regimes on intraocular pressure circadian profile in the dog (Canis familiaris). Exp Anim. 59:215–23
  • Portaluppi F, Smolensky MH, Touitou Y. (2010). Ethics and methods for biological rhythm research on animals and human beings. Chronobiol Int. 27:1911–29
  • Refinetti R, Lissen GC, Halberg F. (2007). Procedures for numerical analysis of circadian rhythms. Biol Rhythm Res. 38:275–325
  • Rosenwasser AM. (1993). Circadian drinking rhythms in SHR and WKY rats: Effects of increasing light intensity. Physiol Behav. 53:1035–41
  • Rowland JM, Potter DE, Reiter RJ. (1981). Circadian rhythm in intraocular pressure: A rabbit model. Curr Eye Res. 1:169–73
  • Samsel PA, Kisiswa L, Erichsen JT, et al. (2011). A novel method for the induction of experimental glaucoma using magnetic microspheres. Invest Ophthalmol Vis Sci. 52:1671–5
  • Schnell CR, Debon C, Percicot CL. (1996). Measurement of intraocular pressure by telemetry in conscious, unrestrained rabbits. Invest Ophthalmol Vis Sci. 37:958–65
  • Shareef SR, Garcia-Valenzuela E, Salierno A, et al. (1995). Chronic ocular hypertension following episcleral venous occlusion in rats. Exp Eye Res. 61:379–82
  • Sommer A, Tielsch JM, Katz J, et al. (1991). Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore Eye Survey. Arch Ophthalmol. 109:1090–5
  • Sposato V, Parisi V, Manni L, et al. (2009). Glaucoma alters the expression of NGF and NGF receptors in visual cortex and geniculate nucleus of rats: Effect of eye NGF application. Vision Res. 49:54–63
  • Todani A, Behlau I, Fava MA, et al. (2011). Intraocular pressure measurement by radio wave telemetry. Invest Ophthalmol Vis Sci. 52:9573–80
  • Twa MD, Roberts CJ, Karol HJ, et al. (2010). Evaluation of a contact lens-embedded sensor for intraocular pressure measurement. J Glaucoma. 19:382–90
  • Ueda J, Sawaguchi S, Hanyu T, et al. (1998). Experimental glaucoma model in the rat induced by laser trabecular photocoagulation after an intracameral injection of India ink. Jpn J Ophthalmol. 42:337–44
  • Valderrama CM, Li R, Liu JH. (2008). Direct effect of light on 24-h variation of aqueous humor protein concentration in Sprague-Dawley rats. Exp Eye Res. 87:487–91
  • Vidal-Sanz M, Salinas-Navarro M, Nadal-Nicolas FM, et al. (2012). Understanding glaucomatous damage: Anatomical and functional data from ocular hypertensive rodent retinas. Prog Retin Eye Res. 31:1–27
  • Wang WH, Millar JC, Pang IH, et al. (2005). Noninvasive measurement of rodent intraocular pressure with a rebound tonometer. Invest Ophthalmol Vis Sci. 46:4617–21
  • Weinreb RN, Aung T, Medeiros FA. (2014). The pathophysiology and treatment of glaucoma: A review. JAMA. 311:1901–11
  • Yu S, Tanabe T, Yoshimura N. (2006). A rat model of glaucoma induced by episcleral vein ligation. Exp Eye Res. 83:758–70

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.