Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 33, 2016 - Issue 7
763
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Phase shifts in circadian peripheral clocks caused by exercise are dependent on the feeding schedule in PER2::LUC mice

, , , , , & show all

References

  • Albrecht U, Sun ZS, Eichele G, Lee CC. (1997). A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell. 91:1055–64.
  • Angeles-Castellanos M, Amaya JM, Salgado-Delgado R, Buijs RM, Escobar C. (2011). Scheduled food hastens re-entrainment more than melatonin does after a 6-h phase advance of the light-dark cycle in rats. J Biol Rhythms. 26:324–334.
  • Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schutz G, Schibler U. (2000). Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science. 289:2344–2347.
  • Dallmann R, Lemm G, Mrosovsky N. (2007). Toward easier methods of studying nonphotic behavioral entrainment in mice. J Biol Rhythms. 22:458–461.
  • Edgar DM, Dement WC. (1991). Regularly scheduled voluntary exercise synchronizes the mouse circadian clock. Am J Physiol. 261:R928–933.
  • Edgar DM, Reid MS, Dement WC. (1997). Serotonergic afferents mediate activity-dependent entrainment of the mouse circadian clock. Am J Physiol. 273:R265–269.
  • Fragala MS, Kraemer WJ, Denegar CR, Maresh CM, Mastro AM, Volek JS. (2011). Neuroendocrine-immune interactions and responses to exercise. Sports Med. 41:621–639.
  • Furutani A, Ikeda Y, Itokawa M, Nagahama H, Ohtsu T, Furutani N, Kamagata M, Yang ZH, Hirasawa A, Tahara Y, Shibata S. (2015). Fish oil accelerates diet-induced entrainment of the mouse peripheral clock via GPR120. PLoS One. 10:e0132472.
  • Golombek DA, Rosenstein RE. (2010). Physiology of circadian entrainment. Physiol Rev. 90:1063–1102.
  • Hamaguchi Y, Tahara Y, Kuroda H, Haraguchi A, Shibata S. (2015). Entrainment of mouse peripheral circadian clocks to <24 h feeding/fasting cycles under 24 h light/dark conditions. Sci Rep. 5:14207.
  • Hara R, Wan K, Wakamatsu H, Aida R, Moriya T, Akiyama M, Shibata S. (2001). Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells. 6:269–278.
  • Hayasaka N, Yaita T, Kuwaki T, Honma S, Honma K, Kudo T, Shibata S. (2007). Optimization of dosing schedule of daily inhalant dexamethasone to minimize phase shifting of clock gene expression rhythm in the lungs of the asthma mouse model. Endocrinology. 148:3316–3326.
  • Hirao A, Nagahama H, Tsuboi T, Hirao M, Tahara Y, Shibata S. (2010). Combination of starvation interval and food volume determines the phase of liver circadian rhythm in Per2:: Lucknock-in mice under two meals per day feeding. Am J Physiol Gastrointest Liver Physiol. 299:G1045–1053.
  • Hughes AT, Piggins HD. (2012). Feedback actions of locomotor activity to the circadian clock. Prog Brain Res. 199:305–336.
  • Ikeda Y, Sasaki H, Ohtsu T, Shiraishi T, Tahara Y, Shibata S. (2015). Feeding and adrenal entrainment stimuli are both necessary for normal circadian oscillation of peripheral clocks in mice housed under different photoperiods. Chronobiol Int. 32:195–210.
  • Kuroda H, Tahara Y, Saito K, Ohnishi N, Kubo Y, Seo Y, Otsuka M, Fuse Y, Ohura Y, Hirao A, Shibata S. (2012). Meal frequency patterns determine the phase of mouse peripheral circadian clocks. Sci Rep. 2:711.
  • Laemle LK, Ottenweller JE. (1999). Nonphotic entrainment of activity and temperature rhythms in anophthalmic mice. Physiol Behav. 66:461–471.
  • Marchant EG, Mistlberger RE. (1996). Entrainment and phase shifting of circadian rhythms in mice by forced treadmill running. Physiol Behav. 60:657–663.
  • Marchant EG, Watson NV, Mistlberger RE. (1997). Both neuropeptide Y and serotonin are necessary for entrainment of circadian rhythms in mice by daily treadmill running schedules. J Neurosci. 17:7974–7987.
  • Ohnishi N, Tahara Y, Kuriki D, Haraguchi A, Shibata S. (2014). Warm water bath stimulates phase-shifts of the peripheral circadian clocks in PER2:: LUCIFERASEmouse. PLoS One. 9:e100272.
  • Pendergast JS, Branecky KL, Huang R, Niswender KD, Yamazaki S. (2014). Wheel-running activity modulates circadian organization and the daily rhythm of eating behavior. Front Psychol. 5:177.
  • Perelis M, Ramsey KM, Bass J. (2015). The molecular clock as a metabolic rheostat. Diabetes Obes Metab. 17 Suppl 1:99–105.
  • Power A, Hughes AT, Samuels RE, Piggins HD. (2010). Rhythm-promoting actions of exercise in mice with deficient neuropeptide signaling. J Biol Rhythms. 25:235–246.
  • Refinetti R, Lissen GC, Halberg F. (2007). Procedures for numerical analysis of circadian rhythms. Biol Rhythm Res. 38:275–325.
  • Sasaki H, Ohtsu T, Ikeda Y, Tsubosaka M, Shibata S. (2014). Combination of meal and exercise timing with a high-fat diet influences energy expenditure and obesity in mice. Chronobiol Int. 31:959–975.
  • Schroeder AM, Colwell CS. (2013). How to fix a broken clock. Trends Pharmacol Sci. 34:605–619.
  • Schroeder AM, Truong D, Loh DH, Jordan MC, Roos KP, Colwell CS. (2012). Voluntary scheduled exercise alters diurnal rhythms of behaviour, physiology and gene expression in wild-type and vasoactive intestinal peptide-deficient mice. J Physiol. 590:6213–6226.
  • Shibata S, Tahara Y, Hirao A. (2010). The adjustment and manipulation of biological rhythms by light, nutrition, and abused drugs. Advanced drug delivery reviews. 62:918–927.
  • Shigeyoshi Y, Taguchi K, Yamamoto S, Takekida S, Yan L, Tei H, Moriya T, Shibata S, Loros JJ, Dunlap JC, Okamura H. (1997). Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell. 91:1043–1053.
  • Sujino M, Furukawa K, Koinuma S, Fujioka A, Nagano M, Iigo M, Shigeyoshi Y. (2012). Differential entrainment of peripheral clocks in the rat by glucocorticoid and feeding. Endocrinology. 153:2277–2286.
  • Summa KC, Turek FW. (2014). Chronobiology and obesity: Interactions between circadian rhythms and energy regulation. Adv Nutr. 5:312s–319s.
  • Tahara Y, Kuroda H, Saito K, Nakajima Y, Kubo Y, Ohnishi N, Seo Y, Otsuka M, Fuse Y, Ohura Y, Komatsu T, Moriya Y, Okada S, Furutani N, Hirao A, Horikawa K, Kudo T, Shibata S. (2012). In vivo monitoring of peripheral circadian clocks in the mouse. Curr Biol. 22:1029–1034.
  • Tahara Y, Shibata S. (2014). Chrono-biology, chrono-pharmacology, and chrono-nutrition. J Pharmacol Sci. 124:320–335.
  • Tahara Y, Shiraishi T, Kikuchi Y, Haraguchi A, Kuriki D, Sasaki H, Motohashi H, Sakai T, Shibata S. (2015). Entrainment of the mouse circadian clock by sub-acute physical and psychological stress. Sci Rep. 5:11417.
  • Takahashi S, Yoshinobu Y, Aida R, Shimomura H, Akiyama M, Moriya T, Shibata S. (2002). Extended action of MKC-242, a selective 5-HT(1A) receptor agonist, on light-induced Per gene expression in the suprachiasmatic nucleus in mice. J Neurosci Res. 68:470–478.
  • Terazono H, Mutoh T, Yamaguchi S, Kobayashi M, Akiyama M, Udo R, Ohdo S, Okamura H, Shibata S. (2003). Adrenergic regulation of clock gene expression in mouse liver. Proc Natl Acad Sci U S A. 100:6795–6800.
  • Wolff G, Esser KA. (2012). Scheduled exercise phase shifts the circadian clock in skeletal muscle. Med Sci Sports Exerc. 44:1663–1670.
  • Yamanaka Y, Honma S, Honma K. (2008). Scheduled exposures to a novel environment with a running-wheel differentially accelerate re-entrainment of mice peripheral clocks to new light-dark cycles. Genes Cells. 13:497–507.
  • Yan L, Silver R. (2002). Differential induction and localization of mPer1 and mPer2 during advancing and delaying phase shifts. Eur J Neurosci. 16:1531–1540.
  • Yasumoto Y, Nakao R, Oishi K. (2015). Free access to a running-wheel advances the phase of behavioral and physiological circadian rhythms and peripheral molecular clocks in mice. PLoS One. 10:e0116476.
  • Yokota SI, Horikawa K, Akiyama M, Moriya T, Ebihara S, Komuro G, Ohta T, Shibata S. (2000). Inhibitory action of brotizolam on circadian and light-induced per1 and per2 expression in the hamster suprachiasmatic nucleus. Br J Pharmacol. 131: 1739–1747.
  • Yoshikawa T, Nakajima Y, Yamada Y, Enoki R, Watanabe K, Yamazaki M, Sakimura K, Honma S, Honma K. (2015). Spatiotemporal profiles of arginine vasopressin transcription in cultured suprachiasmatic nucleus. Eur J Neurosci. 42:2678–2689.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.