37
Views
8
CrossRef citations to date
0
Altmetric
Research Article

No Evidence of Cellular Alterations by MilliTesla-Level Static and 50 Hz Magnetic Fields on S. cerevisiae

, , &
Pages 154-164 | Published online: 05 Oct 2010

References

  • Ager, D. D., Radul, J. A. (1992). Effect of 60-Hz magnetic fields on ultraviolet light-induced mutation and mitotic recombination in Saccharomyces cerevisiae. Mutat. Res., 283:279–286.
  • Berg, H. (1999). Problems of weak electromagnetic field effects in cell biology. Bioelectrochem. Bioenerg., 48:355–360.
  • Chahal, R., Craig, D. Q., Pinney, R. J. (1993). Investigation of potential genotoxic effects of low frequency electromagnetic fields on Escherichia coli. J. Pharm. Pharmacol., 45:30–33.
  • Fairbairn, D. W., O'Neill, K. L. (1994). The effect of electromagnetic field exposure on the formation of DNA single strand breaks in human cells. Cell. Mol. Biol., 40:561–567.
  • Fiedler, U., Gröbner, U., Berg, H. (1995). Electrostimulation of yeast proliferation. Bioelectrochem. Bioenerg., 38:423–425.
  • Fojt, L., Strašák, L., Vetterl, V., Šmarda, J. (2004). Comparison of the low-frequency magnetic field effects on bacteria Escherichia coli, Leclercia adecarboxylata and Staphylococcus aureus. Bioelectrochemistry, 63:337–341.
  • Friedl, A. A., Kiechle, M., Fellerhoff, B., Eckardt-Schupp, F. (1998). Radiation-induced chromosome aberrations in Saccharomyces cerevisiae: Influence of DNA repair pathways. Genetics, 148:975–988.
  • Koyama, S., Nakahara, T., Hirose, H. et al. (2004). ELF electromagnetic fields increase hydrogen peroxide (H2O2)-induced mutations in pTN89 plasmids. Mutat. Res., 560:27–32.
  • Livingston, G. K., Witt, K. L., Gandhi, O. P. et al. (1991). Reproductive integrity of mammalian cells exposed to power frequency electromagnetic fields. Environ. Mol. Mutagen., 17:49–58.
  • Markkanen, A., Juutilainen, J., Lang, S. et al. (2001). Effects of 50 Hz magnetic field on cell cycle kinetics and the colony forming ability of budding yeast exposed to ultraviolet radiation. Bioelectromagnetics, 22:345–350.
  • Mehedintu, M., Berg, H. (1997). Proliferation response of yeast Saccharomyces cerevisiae on electromagnetic field parameters. Bioelectrochem. Bioenerg., 43:67–70.
  • Mevissen, M., Kietzman, M., Löcher, W. (1995). In vivo exposure of rats to a weak alternating magnetic field increases ornithine decarboxylase activity in mammary gland by a similar extent as the carcinogen DMBA. Cancer Lett., 90:207–214.
  • Miyakoshi, J. (2005). Effects of static magnetic fields at the cellular level. Prog. Biophys. Mol. Biol., 87:213–223.
  • Moore, R. L. (1979). Biological effects of magnetic fields: Studies with microorganisms. Can. J. Microbiol., 25:1145–1151.
  • Nakasono, S., Laramee, C., Saiki, H, McLeod, K. J. (2003). Effect of power-frequency magnetic fields on genome-scale gene expression in Saccharomyces cerevisiae. Radiat. Res., 160:25–37.
  • Ohtsu, S., Miyakoshi, J., Tsukada, T. et al. (1995). Enhancement of β-galactosidase gene expression in rat pheochromocytoma cells by exposure to extremely low frequency magnetic fields. Biochem. Biophys. Res. Commun., 212:104–109.
  • Pafkova, H., Jerabek, J. (1994). Interaction of MF 50 Hz, 10 mT with high dose x-rays: Evaluation of embryotoxicity in chick embryos. Rev. Environ. Health, 10:235–241.
  • Phillips, J. L., Haggren, W., Thomas, W. J. et al. (1992). Magnetic field-induced changes in specific gene transcription. Biochem. Biophys. Acta, 1132:140–144.
  • Roy, S., Noda, Y., Eckert, V. et al. (1995). The phorbol 12-myristate 13-acetate (PMA)-induced oxidative burst in rat peritoneal neutrophils is increased by a 0.1 mT (60 Hz) magnetic field. FEBS Lett., 376:164–166.
  • Ruiz-Gómez, M. J., Prieto-Barcia, M. I., Ristori-Bogajo, E., Martínez-Morillo, M. (2004). Static and 50 Hz magnetic fields of 0.35 and 2.45 mT have no effect on the growth of Saccharomyces cerevisiae. Bioelectrochemistry, 64:151–155.
  • Scarfi, M. R., Bersani, F., Cossarizza, A. et al. (1993). 50 Hz AC sinusoidal electric fields do not exert genotoxic effects (micronucleus formation) in human lymphocytes. Radiat. Res., 135:64–68.
  • Siede, W., Friedl, A. A., Dianova, I. et al. (1996). The Saccharomyces cerevisiae Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination. Genetics, 142:91–102.
  • Umezu, K., Sugawara, N., Chen, C. et al. (1998). Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism. Genetics, 148:989–1005.
  • Velizarov, S., Berg, H. (1996). An attempt to alter the ATP pool in S. cerevisiae cells by 50-Hz weak electromagnetic fields. Electro- Magnetobiol., 15:209–212.
  • Vijayalaxmi, O. G. (2005). Controversial cytogenetic observations in mammalian somatic cells exposed to extremely low frequency electromagnetic radiation: A review and future research recommendations. Bioelectromagnetics, 26:412–430.
  • Zhang, Q-M., Tokiwa, M., Doi, T. et al. (2003). Strong static magnetic field and the induction of mutations through elevated production of reactive oxygen species in Escherichia coli soxR. Int. J. Radiat. Biol., 79:281–286.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.