179
Views
5
CrossRef citations to date
0
Altmetric
Research Article

They live in the land down under: thyroid function and basal metabolic rate in the Blind Mole Rat, Spalax

, , , , , , , & show all
Pages 80-85 | Received 24 Apr 2013, Accepted 05 Aug 2013, Published online: 25 Sep 2013

References

  • Nevo E, Ivanitskaya E, Beiles A. Adaptive radiation of blind subterranean mole rats: naming and revisiting the four sibling species of the Spalax ehrenbergi superspecies in Israel: Spalax galili (2n = 52), S. golani (2n = 54), S. carmeli (2n = 58) and S. judaei (2n = 60). Leiden: Bachkhuys Publishers b.v.; 2001
  • Nevo E. Evolution of genome-phenome diversity under environmental stress. Proc Natl Acad Sci U S A 2001;98:6233–40
  • Arieli R, Heth G, Nevo E, Hoch D. Hematocrit and hemoglobin concentration in four chromosomal species and some isolated populations of actively speciating subterranean mole rats in Israel. Experientia 1986;42:441–3
  • Avivi A, Gerlach F, Joel A, et al. Neuroglobin, cytoglobin, and myoglobin contribute to hypoxia adaptation of the subterranean mole rat Spalax. Proc Natl Acad Sci USA 2010;107:21570–5
  • Avivi A, Resnick MB, Nevo E, et al. Adaptive hypoxic tolerance in the subterranean mole rat Spalax ehrenbergi: the role of vascular endothelial growth factor. FEBS Lett 1999;452:133–40
  • Kleinschmidt T, Nevo E, Braunitzer G. The primary structure of the hemoglobin of the mole rat (Spalax ehrenbergi, rodentia, chromosome species 60). Hoppe Seylers Z Physiol Chem 1984;365:531–7
  • Nevo E, Ben-Shlomo R, Maeda N. Haptoglobin DNA polymorphism insubterranean mole rats of the Spalax ehrenbergi superspecies in Israel. Heredity (Edinb) 1989;62:85–90
  • Shams I, Avivi A, Nevo E. Hypoxic stress tolerance of the blind subterranean mole rat: expression of erythropoietin and hypoxia-inducible factor 1 alpha. Proc Natl Acad Sci U S A 2004;101:9698–703
  • Shams I, Nevo E, Avivi A. Ontogenetic expression of erythropoietin and hypoxia-inducible factor-1 alpha genes in subterranean blind mole rats. FASEB J 2005;19:307–9
  • Widmer HR, Hoppeler H, Nevo E, et al. Working underground: respiratory adaptations in the blind mole rat. Proc Natl Acad Sci U S A 1997;94:2062–7
  • Edoute Y, Arieli R, Nevo E. Evidence for improved myocardial oxygen delivery and function during hypoxia in the mole rat. J Comp Physiol B 1988;158:575–82
  • Norris D. Vertebrate endocrinology. Philadelphia: Lea and Febiger; 1985
  • Vantyghem MC, Balavoine AS, Wemeau JL, Douillard C. Hyponatremia and antiduresis syndrome. Ann Endocrinol (Paris) 2011;72:500–12
  • Nevo E. Mosaic evolution of subterranean mammals. Regression, progression and global convergence. Oxford: Oxford Scientific Publications, Oxford University Press; 1999
  • Buffenstein R, Woodley R, Thomadakis C, et al. Cold-induced changes in thyroid function in a poikilothermic mammal, the naked mole-rat. Am J Physiol Regul Integr Comp Physiol 2001;280:R149–55
  • Endo T, Kobayashi T. Immunization with thyroglobulin induces Graves'-like disease in mice. J Endocrinol 2009;202:217–22
  • Kato Y, Ikushiro S, Haraguchi K, et al. A possible mechanism for decrease in serum thyroxine level by polychlorinated biphenyls in Wistar and Gunn rats. Toxicol Sci 2004;81:309–15
  • Steger RW, Chandrashekar V, Bartke A, et al. Effects of elevated gonadotropin levels on thyroid function in the male rat. Life Sci 1989;45:85–90
  • Ma T, Yang B, Gillespie A, et al. Severely impaired urinary concentrating ability in transgenic mice lacking aquaporin-1 water channels. J Biol Chem 1998;273:4296–9
  • Waymouth C. Osmolality of mammalian blood and of media for culture of mammalian cells. In Vitro 1970;6:109–27
  • Nevo E, Shkolnik A. Adaptive metabolic variation of chromosome forms in mole rats, Spalax. Experientia 1974;30:724–6
  • Arieli R, Heth G, Nevo E, et al. Adaptive heart and breathing frequencies in four ecologically differentiating chromosomal species of mole rats in Israel. Experientia 1986;42:131–3
  • White CR, Kearney MR. Determinants of inter-specific variation in basal metabolic rate. J Comp Physiol B 2013;183:1–26
  • Konarzewski M, Ksiazek A. Determinants of intra-specific variation in basal metabolic rate. J Comp Physiol B 2013;183:27–41
  • al-Adsani H, Hoffer LJ, Silva JE. Resting energy expenditure is sensitive to small dose changes in patients on chronic thyroid hormone replacement. J Clin Endocrinol Metab 1997;82:1118–25
  • Kim B. Thyroid hormone as a determinant of energy expenditure and the basal metabolic rate. Thyroid 2008;18:141–4
  • Stenlof K, Sjostrom L, Fagerberg B, et al. Thyroid hormones, procollagen III peptide, body composition and basal metabolic rate in euthyroid individuals. Scand J Clin Lab Invest 1993;53:793–803
  • Welle S, Nair KS. Relationship of resting metabolic rate to body composition and protein turnover. Am J Physiol 1990;258:E990–8
  • Hulbert AJ, Hinds DS, MacMillen RE. Minimal metabolism, summit metabolism and plasma thyroxine in rodents from different environments. Comp Biochem Physiol A Comp Physiol 1985;81:687–93
  • Refetoff S, Robin NI, Fang VS. Parameters of thyroid function in serum of 16 selected vertebrate species: a study of PBI, serum T4, free T4, and the pattern of T4 and T3 binding to serum proteins. Endocrinology 1970;86:793–805
  • Obregon MJ, Escobar del Rey F, Morreale de Escobar G. The effects of iodine deficiency on thyroid hormone deiodination. Thyroid 2005;15:917–29
  • Davis PJ, Spaulding SW, Gregerman RI. The three thyroxine-binding proteins in rat serum: binding capacities and effects of binding inhibitors. Endocrinology 1970;87:978–86
  • Bernstein RS, Robbins J, Rall JE. Polymorphism of monkey thyroxin-binding prealbumin (TBPA): mode of inheritance and hybridization. Endocrinology 1970;86:383–90
  • Ali M, Guillon G, Clos J. Comparative study of collecting tubules and vasopressin binding capacity in the renal medulla of developing hypothyroid rat. J Dev Physiol 1988;10:297–308
  • Ciosek J. Vasopressin and oxytocin release as influenced by thyrotropin- releasing hormone in euhydrated and dehydrated rats. J Physiol Pharmacol 2002;53:423–37
  • Dakine N, Oliver C, Grino M. Thyroxine modulates corticotropin- releasing factor but not arginine vasopressin gene expression in the hypothalamic paraventricular nucleus of the developing rat. J Neuroendocrinol 2000;12:774–83
  • Mogulkoc R, Baltaci AK. Influences of isotonic, hypertonic and hypovolemic treatments on vasopressin response and fluid-electrolyte balance in l- thyroxine-induced hyperthyroid rat. Life Sci 2006;79:817–21
  • Aydin L, Mogulkoc R, Baltaci AK. Influences of hypertonic and hypovolemic treatments on vasopressin response in propylthiouracil (PTU) induced hypothyroid rat and effect on supplementation with L-thyroxine. Acta Biol Hung 2010;61:1–9
  • Mogulkoc R, Baltaci AK, Yilmaz B, Kelestimur H. Influence of hypovolemic and hypertonic treatments on plasma vasopressin levels and fluid balance in the propylthiouracil-induced hypothyroid rat. Neuro Endocrinol Lett 1999;20:311–14
  • Dickinson H, Moritz K, Wintour EM, et al. A comparative study of renal function in the desert-adapted spiny mouse and the laboratory-adapted C57BL/6 mouse: response to dietary salt load. Am J Physiol Renal Physiol 2007;293:F1093–8
  • King JM, Bradshaw SD. Comparative water metabolism of Barrow Island macropodid marsupials: hormonal versus behavioural-dependent mechanisms of body water conservation. Gen Comp Endocrinol 2008;155:378–85
  • Lacas-Gervais S, Maurel D, Hubert F, et al. Vasopressin and galanin expression in the hypothalamus of two African rodents, Taterillus gracilis and Steatomys caurinus, subjected to water-restriction. Gen Comp Endocrinol 2003;133:132–45
  • Banta MR, Holcombe DW. The effects of thyroxine on metabolism and water balance in a desert-dwelling rodent, Merriam's kangaroo rat (Dipodomys merriami). J Comp Physiol B 2002;172:17–25
  • Hulbert AJ, Else PL. Comparison of the “mammal machine” and the “reptile machine": energy use and thyroid activity. Am J Physiol 1981;241:R350–6
  • Lovegrove BG. The zoogeography of mammalian basal metabolic rate. Am Nat 2000;156:201–19
  • Nagy KA. Field metabolic rate and body size. J Exp Biol 2005;208:1621–5
  • White CR. The influence of foraging mode and arid adaptation on the basal metabolic rates of burrowing mammals. Physiol Biochem Zool 2003;76:122–34
  • Yousef MK, Johnson HD. Thyroid activity in desert rodents: a mechanism for lowered metabolic rate. Am J Physiol 1975;229:427–31
  • Dumitrescu AM, Refetoff S. The syndromes of reduced sensitivity to thyroid hormone. Biochim Biophys Acta 2013;1830:3987--4003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.