1,520
Views
26
CrossRef citations to date
0
Altmetric
Review Article

Caveolae, caveolin, and cavins: Potential targets for the treatment of cardiac disease

&
Pages 530-541 | Received 06 Dec 2010, Accepted 28 Mar 2011, Published online: 10 Sep 2012

References

  • Brown CM, Petersen NO. An image correlation analysis of the distribution of clathrin associated adaptor protein (AP-2) at the plasma membrane. J Cell Sci. 1998;111:271–81.
  • Simons K, Ikonen E. Functional rafts in cell membranes. Nature. 1997;387:569–72.
  • Echarri O, Muriel O, Del Pozo MA. Intracellular trafficking of raft/caveolae domains: insights from integrin signaling. Semin Cell Dev Biol. 2007;18:627–37.
  • Hanzal-Bayer MF, Hancock JF. Lipid rafts and membrane traffic. FEBS Lett. 2007;581:2098–104.
  • Palade GE. An electron microscope study of the mitochondrial structure. J Histochem Cytochem. 1953;1:188–211.
  • Palade GE, Bruns RR. Structural modulations of plasmalemmal vesicles. J Cell Biol. 1968;37:633–49.
  • Simionescu M, Simionescu N, Palade GE. Segmental differentiations of cell junctions in the vascular endothelium. The microvasculature. J Cell Biol. 1975;67:863–85.
  • Thorn H, Stenkula KG, Karlsson, Ortegren MU, Nystrom FH, Gustavsson J, . Cell surface orifices of caveolae and localization of caveolin to the necks of caveolae in adipocytes. Mol Biol Cell. 2003;14:3967–76.
  • Guillot FL, Audus KL, Raub TJ. Fluid-phase endocytosis by primary cultures of bovine brain microvessel endothelial cell monolayers. Microvasc Res. 1990;39:1–14.
  • Murata M, Peranen J, Schreiner R, Wieland F, Kurzchalia TV, Simons K. VIP21/caveolin is a cholesterol-binding protein. Proc Natl Acad Sci USA. 1995;92:10339–43.
  • Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RG. Caveolin, a protein component of caveolae membrane coats. Cell. 1992;68:673–82.
  • Kurzchalia TV, Dupree P, Parton RG, Kellner R, Virta H, . VIP21, a 21-kD membrane protein is an integral component of trans- Golgi-network-derived transport vesicles. J Cell Biol. 1992;118:1003–14.
  • Cho WJ, Chow AK, Schulz R, Daniel EE. Matrix metalloproteinase-2, caveolins, focal adhesion kinase and c-Kit in cells of the mouse myocardium. J Cell Mol Med. 2007;11: 1069–86.
  • Cho WJ, Chow AK, Schulz R, Daniel EE. Caveolin-1 exists and may function in cardiomyocytes. Can J Physiol Pharmacol. 2010;88:73–6.
  • Chow AK, Cena J, El-Yazbi AF, Crawford BD, Holt A, Cho WJ, . Caveolin-1 inhibits matrix metalloproteinase-2 activity in the heart. J Mol Cell Cardiol. 2007;42: 896–901.
  • Chow AK, Daniel EE, Schulz R. Cardiac function is not significantly diminished in hearts isolated from young caveolin-1 knockout mice. Am J Physiol. 2010;299: H1183–9.
  • Williams TM, Lisanti MP. The caveolin genes: from cell biology to medicine. Ann Med. 2004;36:584–95.
  • Monier S, Dietzen DJ, Hastings WR, Lublin DM, Kurzchalia TV, . VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol Biol Cell. 1995;6:911–27.
  • Tagawa A, Mezzacasa A, Hayer A, Longalti A, Pelkmans L, Helenlus A, . Assembly and trafficking of caveolar domains in the cell: caveolae as stable, cargo-triggered, vesicular transporters. J Cell Biol. 2005;170:769–79.
  • Parolini I, Sargiacomo M, Galbiati F, Rizzo G, Grignani F, Engelman JA, . Expression of caveolin-1 is required for the transport of caveolin-2 to the plasma membrane. Retention of caveolin-2 at the level of the Golgi complex. J Biol Chem. 1999;274:25718–25.
  • Lee H, Park DS, Razani B, Russell RG, Pestell RG, Lisanti MP, . Caveolin-1 mutations (P132L and null) and the pathogenesis of breast cancer: caveolin-1 (P132L) behaves in a dominant-negative manner and caveolin-1 (−/−) null mice show mammary epithelial cell hyperplasia. Am J Pathol. 2002;161:1357–69.
  • Mogelsvang S, Marsh BJ, Ladinsky MS, Howell KE. Predicting function from structure: 3D structure studies of the mammalian Golgi complex. Traffic. 2004;5:338–45.
  • Jansa P, Mason SW, Hoffman RV, Grumnt I, . Cloning and functional characterization of PTRF, a novel protein which induces dissociation of paused ternary transcription complexes. EMBO J. 1998;17:2855–64.
  • Leary DJ, Huang S. Regulation of ribosome biogenesis within the nucleolus. FEBS Lett. 2001;509:145–50.
  • Grummt I. Regulation of mammalian ribosomal gene transcription by RNA polymerase I. Prog Nucleic Acid Res Mol Biol. 1999;62:109–54.
  • Jansa P, Grummt I. Mechanism of transcription termination: PTRF interacts with the largest subunit of RNA polymerase I and dissociates paused transcription complexes from yeast and mouse. Mol Gen Genet. 1999;262: 508–14.
  • Liu L, Pilch PF. A critical role of cavin (polymerase I and transcript release factor) in caveolae formation and organization. J Biol Chem. 2008;283:4314–22.
  • Foster LJ, De Hoog CL, Mann M. Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factor. Proc Natl Acad Sci U S A. 2003;100: 5813–8.
  • Scherer PE, Lewis RY, Volonte D, Engelman JA, Galbiati F, Couet J. Cell type and tissue specific expression of cavelin-2. Caveolin-1 and 2 co-localize and form a stable heterooligomeric complex in vivo. J Biol Chem. 1997;272: 29337–46.
  • Liu L, Brown D, McKee M, Lebrasseur NK, Yang D, Albrecht KH. Deletion of cavin/PTRF causes global loss of caveolae, dyslipidemia and glucose tolerance. Cell Metab. 2008;8:310–7.
  • Hill MM, Bastiani M, Luetterforst R, Kirkham M, Nixon SJ. PTRF-cavin, a conserved cystolic protein required for caveolae formation and function. Cell. 2008;132:113–24.
  • Burgener R, Wolf M, Ganz T, Baggiolini M. Purification and characterization of a major phosphatidylserine-binding phosphoprotein from human platelets. Biochem J. 1990; 269:729–34.
  • Mineo C, Ying YS, Chapline C, Jaken S, Anderson RG, . Targeting of protein kinase C alpha to caveolae. J Cell Biol. 1998;141:601–10.
  • Gustincich S, Sand S, Schneider C. Serum deprivation response gene is induced by serum starvation but not by contact inhibition. Cell Growth Differ. 1993;4:753–60.
  • Gustincich S, Vatta P, Goruppi S, Wolf M, Saccone S, Della Valle G, . The human serum deprivation response gene (SDPR) maps to 2q32-q33 and codes for a phosphatidylserine-binding protein. Genomics. 1999;57:120–9.
  • Hansen CG, Bright NA, Howard G, Nichols BJ. SDPR induces membrane curvature and functions in the formation of caveolae. Nat Cell Biol. 2009;11:807–14.
  • Izumi Y, Hirai S, Tamai Y, Fujise-Matsuoka A, Nishimura Y, Ohno S. A protein kinase C delta binding protein SRBC whose expression is induced by serum deprivation. J Biol Chem. 1997;272:7381–9.
  • Xu XL, Wu LC, Du F, Davis A, Peyton M, Tomizawa Y. Inactivation of human SRBC, located within the 11p15.5p 15.4 tumor suppressor region, in breast and lung cancer. Cancer Res. 2001;61:7943–9.
  • McMahon KA, Zajicek H, Li WP, Peyton MJ, Minna JD, Hernandez VJ. SRBC/cavin-3 is a caveolin adapter protein that regulates caveolae function. EMBO J. 2009;28: 1001–15.
  • Ogata T, Ueyama T, Isodono K, Tagawa M, Takehara N, Kawashima T. MURC, a muscle restricted coiled-coil protein that modulates the Rho/ROCK pathway, induces cardiac dysfunction and conduction disturbance. Mol Cell Biol. 2008;28:3424–36.
  • Tagawa M, Ueyama T, Ogata T, Takehara N, Nakajima N, Isodono K. MURC, a muscle restricted copiled protein, is involved in the regulation of skeletal myogenesis. Am J Physiol. 2008;295:C490–8.
  • Bastiani M, Liu L, Hill MM, Jedrychowski MP, Nixon SJ, Lo HP. MURC/cavin-4 and cavin family members form tissue specific caveolar complex. J Cell Biol. 2009;185: 1259–73.
  • Gratton JP, Bernatchez P, Sessa WC. Caveolae and caveolins in the cardiovascular system. Circ Res. 2004;94:1408–17.
  • Patel HH, Murray F, Insel PA. Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annu Rev Pharmacol Toxicol. 2008;48:359–91.
  • Cohen AW, Park DS, Woodman SE, Williams TM, Chandra M, Shirani J, . Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. Am J Physiol Cell Physiol. 2003;284: C457–74.
  • Woodman SE, Park DS, Cohen AW, Cheung MW, Chandra M, Shirani J. Caveolin-3 knockout mice develop a progressive cardiomyopathy and show hyperactivation of the p42/44 MAPK cascade. J Biol Chem. 2002;277: 38988–97.
  • Park DS, Woodman SE, Schubert W, Cohen AW, Frank PG, Chandra M. Caveolin 1/3 double knockout mice are viable but lack both muscle and non-muscle caveolae and develop a severe cardiomyopathic phenotype. Am J Pathol. 2002; 160:2207–17.
  • Murata T, Lin MI, Huang Y, Yu J, Bauer PM, Giordano FJ, . Reexpression of caveolin-1 in endothelium rescues the vascular, cardiac, and pulmonary defects in global caveolin-1 knockout mice. J Exp Med. 2007;204: 2373–82.
  • Wunderlich C, Schober K, Lange SA, Drab M, Braun-dullaens RC, Kesper P, . Disruption of caveolin-1 leads to enhanced nitrosative stress and severe systolic and diastolic heart failure. Biochem Biophys Res Commun. 2006;340:702–8.
  • Capozza F, Cohen AW, Cheung MW, Sotgia F, Fchupert W, Battista M, . Muscle-specific interaction of caveolin isoforms: differential complex formation between caveolins in fibroblastic vs. muscle cells. Am J Physiol Cell Physiol. 2005;288:C677–91.
  • Song KS, Scherer PE, Tang Z, Okamoto T, Li S, Chafel M, . Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J Biol Chem. 1996; 271:15160–5.
  • Crosbie RH, Yamada H, Venzke DP, Lisanti MP, Campbell KP, . Caveolin-3 is not an integral component of the dystrophin glycoprotein complex. FEBS Lett. 1998; 427:279–82.
  • Sotgia F, Lee JK, Das K, Bedford M, Petrucci TC, Macioee P, . Caveolin-3 directly interacts with the C-terminal tail of beta-dystroglycan. Identification of a central WW-like domain within caveolin family members. J Biol Chem. 2000;275:38048–58.
  • Garcia-Cardena G, Fan R, Stern DF, Liu J, Sessa WC. Endothelial nitric oxide synthase is regulated by tyrosine phosphorylation and interacts with caveolin-1. J Biol Chem. 1996;271:27237–40.
  • Smythe GM, Eby JC, Disatnik MH, Rando T. A caveolin-3 mutant that causes limb girdle muscular dystrophy type 1C disrupts Src localization and activity and induces apoptosis in skeletal myotubes. J Cell Sci. 2003;116:4739–49.
  • Sotgia F, Bonuccelli G, Minetti C, Woodman SE, Capozza T, Kemp RG, . Phosphofructokinase muscle-specific isoform requires caveolin-3 expression for plasma membrane recruitment and caveolar targeting: implications for the pathogenesis of caveolin-related muscle diseases. Am J Pathol. 2003;163:2619–34.
  • Galbiati F, Volonte D, Engelman JA, Scherer PE, Lisanti MP. Targeted down-regulation of caveolin-3 is sufficient to inhibit myotube formation in differentiating C2C12 myoblasts. Transient activation of p38 mitogen-activated protein kinase is required for induction of caveolin-3 expression and subsequent myotube formation. J Biol Chem. 1999;274: 30315–21.
  • Minetti C, Sotgia F, Bruno C, Scartezzini P, Broda P, Bado M, . Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nat Genet. 1998;18:365–8.
  • Carbone I, Bruno C, Sotgia F, Bado M, Broda P, Masetti E, . Mutation in the CAV3 gene causes partial caveolin-3 deficiency and hyperCKemia. Neurology. 2000;54: 1373–6.
  • Galbiati F, Razani B, Lisanti MP. Caveolae and caveolin-3 in muscular dystrophy. Trends Mol Med. 2001;7:435–41.
  • Fulizio L, Nascimbeni AC, Fanin M, Piluso G, Polinato L, Nigro V, . Molecular and muscle pathology in a series of caveolinopathy patients. Hum Mutat. 2005;25:82–9.
  • Vatta M, Ackerman MJ, Ye B, Makielski JC, Ughanze EE, Taylor EW, . Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation. 2006;114:2104–12.
  • O'Connell KM, Martens JR, Tamkun MM. Localization of ion channels to lipid Raft domains within the cardiovascular system. Trends Cardiovasc Med. 2004;14:37–42.
  • Maguy A, Hebert TE, Nattel S. Involvement of lipid rafts and caveolae in cardiac ion channel function. Cardiovasc Res. 2006;69:798–807.
  • Wang XL, Ye D, Peterson TE, Cao S, Shah VH, Katusic ZS, . Caveolae targeting and regulation of large conductance Ca(2+)-activated K+ channels in vascular endothelial cells. J Biol Chem. 2005;280:11656–64.
  • Fujimoto T, Miyawaki A, Mikoshiba K. Inositol 1,4,5-trisphosphate receptor-like protein in plasmalemma caveolae is linked to actin filaments. J Cell Sci. 1995;108(Pt. 1): 7–15.
  • Lohn M, Furstenau M, Sagach V, Elger M, Schulze W, Luft FC, . Ignition of calcium sparks in arterial and cardiac muscle through caveolae. Circ Res. 2000;87:1034–9.
  • Kwiatek AM, Minshall RD, Cool DR, Skidgel RA, Malik AB, Tiruppathi C. Caveolin-1 regulates store-operated Ca2+ influx by binding of its scaffolding domain to transient receptor potential channel-1 in endothelial cells. Mol Pharmacol. 2006;70:1174–83.
  • Bergdahl A, Gomez MF, Dreja K, Gomez MF, Dreja K, Xu SE, . Cholesterol depletion impairs vascular reactivity to endothelin-1 by reducing store-operated Ca2+ entry dependent on TRPC1. Circ Res. 2003;93: 839–47.
  • Fagan KA, Smith KE, Cooper DM. Regulation of the Ca2+-inhibitable adenylyl cyclase type VI by capacitative Ca2+entry requires localization in cholesterol-rich domains. J Biol Chem. 2000;275:26530–7.
  • Martens JR, Sakamoto N, Sullivan SA, Grobaski TD, Tamkun MM. Isoform-specific localization of voltage-gated K+ channels to distinct lipid raft populations. Targeting of Kv1.5 to caveolae. J Biol Chem. 2001;276:8409–14.
  • Graf GA, Matveev SV, Smart EJ. Class B scavenger receptors, caveolae and cholesterol homeostasis. Trends Cardiovasc Med. 1999;9:221–5.
  • Blair A, Shaul PW, Yuhanna IS, Conrad PA, Smart EJ. Oxidized low density lipoprotein displaces endothelial nitric-oxide synthase (eNOS) from plasmalemmal caveolae and impairs eNOS activation. J Biol Chem. 1999;274: 32512–9.
  • Feron O, Dessy C, Desager JP, Balligand JL. Hydroxy-methylglutaryl-coenzyme A reductase inhibition promotes endothelial nitric oxide synthase activation through a decrease in caveolin abundance. Circulation. 2001;103:113–8.
  • Pelat M, Dessy C, Massion P, Desager JP, Feron O, Balligand JL. Rosuvastatin decreases caveolin-1 and improves nitric oxide-dependent heart rate and blood pressure variability in apolipoprotein E-/- mice in vivo. Circulation. 2003;107:2480–6.
  • Zhu Y, Liao HL, Wang N, Yuan Y, Ma KS, Verna L, . Lipoprotein promotes caveolin-1 and Ras translocation to caveolae: role of cholesterol in endothelial signaling. Arterioscler Thromb Vasc Biol. 2000;20:2465–70.
  • Kincer JF, Uittenbogaard A, Dressman J, Guerin TM, Febbraio M, Guo L, . Hypercholesterolemia promotes a CD36-dependent and endothelial nitric-oxide synthase mediated vascular dysfunction. J Biol Chem. 2002;277: 23525–33.
  • Seiler C, Hess OM, Buechi M, Suter TM, Krayenbuehl HP. Influence of serum cholesterol and other coronary risk factors on vasomotion of angiographically normal coronary arteries. Circulation. 1993;88:2139–48.
  • Reddy KG, Nair RN, Sheehan HM, Hodgson JM. Evidence that selective endothelial dysfunction may occur in the absence of angiographic or ultrasound atherosclerosis in patients with risk factors for atherosclerosis. J Am Coll Cardiol. 1994;23:833–43.
  • Dorahy DJ, Lincz LF, Meldrum CJ, Burns GF. Biochemical isolation of a membrane microdomain from resting platelets highly enriched in the plasma membrane glycoprotein CD36. Biochem J. 1996;319:67–72.
  • Feron O, Dessy C, Moniotte S, Desager JP, Balligand JL. Hypercholesterolemia decreases nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase. J Clin Invest. 1999;103:897–905.
  • Febbraio M, Podrez EA, Smith JD, Schmitt D, Silverstein RL, Hazen SL, . Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest. 2000;105: 1049–56.
  • Podrez EA, Febbraio M, Sheibani N, Shelbani N, Hoff HF. Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species. J Clin Invest. 2000;105:1095–108.
  • Ziche M, Morbidelli L, Choudhur RI, Zhang HT, Donnini S, Granger HJ, . Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis. J Clin Invest. 1997;99:2625–34.
  • Gupta K, Kshirsagar S, Li W, Gui L, Ramakrishnan S, Gupta SP, . VEGF prevents apoptosis of human microvascular endothelial cells via opposing effects on MAPK/ERK and SAPK/JNK signaling. Exp Cell Res. 1999;247: 495–504.
  • Petrova TV, Makinen T, Alitalo K. Signaling via vascular endothelial growth factor receptors. Exp Cell Res. 1999; 253:117–30.
  • Feng Y, Venema VJ, Venema RC, Tsai N, Behzadian MA, Caldwell RB. VEGF-induced permeability increase is mediated by caveolae. Invest Ophthalmol Vis Sci. 1999; 40:157–67.
  • Labrecque L, Royal I, Surprenant DS, Patterson C, Gingras D, Beliveau R. Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Mol Biol Cell. 2003;14: 334–47.
  • Brouet A, Sonveaux P, Dessy C, Moniotte S, Balligand JL, Feron O. Hsp90 and caveolin are key targets for the proangiogenic nitric oxide-mediated effects of statins. Circ Res. 2001;89:866–73.
  • Ju H, Venema VJ, Liang H, Harris MB, Zou R, Venema RC. Bradykinin activates the Janus-activated kinase/signal transducers and activators of transcription (JAK/STAT) pathway in vascular endothelial cells: localization of JAK/STAT signalling proteins in plasmalemmal caveolae. Biochem J. 2000;351:257–64.
  • Ju H, Venema VJ, Marrero MB, Venema RC. Inhibitory interactions of the bradykinin B2 receptor with endothelial nitric-oxide synthase. J Biol Chem. 1998;273:24025–9.
  • Aplin AE, Howe AK, Juliano RL. Cell adhesion molecules, signal transduction and cell growth. Curr Opin Cell Biol. 1999;11:737–44.
  • Stein E, Lane AA, Cerretti DP, Schoecklmann HO, Schroff AD, Van Etten RL, . Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes, attachment, and assembly responses. Genes Dev. 1998;12:667–78.
  • Wary KK, Mariotti A, Zurzolo C, Giancotti FG. A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell. 1998;94:625–34.
  • Wei Y, Yang X, Liu Q, Wilkins JA, Chapman HA. A role for caveolin and the urokinase receptor in integrin-mediated adhesion and signaling. J Cell Biol. 1999;144:1285–94.
  • Griffoni C, Spisni E, Santi S, Riccio M, Guarnieri T, Tomasi V. Knockdown of caveolin-1 by antisense oligonucleotides impairs angiogenesis in vitro and in vivo. Biochem Biophys Res Commun. 2000;276:756–61.
  • Woodman SE, Ashton AW, Schubert W, Lee H, Williams T, Medina FA, . Caveolin-1 knock-out mice show an impaired angiogenic response to exogenous stimuli. Am J Pathol. 2003;162:2059–68.
  • Diwan A, Dorn GW. Decompensation of cardiac hypertrophy: cellular mechanism and novel therapeutic target. Physiology. 2007;22:56–64.
  • Hill JA, Karimi M, Kutschke W, Davisson RL, Zimmerman K, Wang Z, . Cardiac hypertrophy is not a required compensatory response to short term pressure overload. Circulation. 2000;101:2863–9.
  • Sano M, Schneider MD. Still stressed out but doing fine: normalization of wall stress is superfluous to maintain cardiac function in chronic pressure overload. Circulation. 2002;105:8–10.
  • Koga A, Oka N, Kikuchi T, Miyazaki H, Kato S, Imaizumi T. Adenovirus-mediated overexpression of caveolin-3 inhibits rat cardiomyocyte hypertrophy. Hypertension. 2003;42:213–9.
  • Fujita T, Otsu K, Oshikawa J, Hori H, Kitamura H, Ito T, . Caveolin-3 inhibits growth signal in cardiac myoblasts in a Ca2+-dependent manner. J Cell Mol Med. 2006; 10:216–24.
  • De Souza AP, Cohen AW, Park DS, Woodman SE, Tang B, Gutstein DE, . MR imaging of caveolin gene-specific alterations in right ventricular wall thickness. Magn Reson Imaging. 2005;23:61–8.
  • Ohsawa Y, Toko H, Katsura M, Morimoto K, Yamada H, Ichikawa Y, . Overexpression of P104L mutant caveolin-3 in mice develops hypertrophic cardiomyopathy with enhanced contractility in association with increased endothelial nitric oxide synthase activity. Hum Mol Genet. 2004;13:151–7.
  • Feron O, Balligand JL. Caveolins and the regulation of endothelial nitric oxide synthase in the heart. Cardiovasc Res. 2006;69:788–97.
  • Garcia-Cardena G, Martasek P, Masters BS, Skidd PM, Couet J, Li S, . Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. J Biol Chem. 1997;272:25437–40.
  • Bolli R. The late phase of preconditioning. Circ Res. 2000; 87:972–83.
  • Yellon DM, Downey JM. Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev. 2003;83:1131–51.
  • Ballard-Croft C, Locklar AC, Kristo G, Lasley RD. Regional myocardial ischemia-induced activation of MAPKs is associated with subcellular redistribution of caveolin and cholesterol. Am J Physiol Heart Circ Physiol. 2006;291: H658–67.
  • Das M, Gherghiceanu M, Lekli I, Mukherjee S, Popescu LM, Das DK. Essential role of lipid raft in ischemic preconditioning. Cell Physiol Biochem. 2008;21:325–34.
  • Patel HH, Tsutsumi YM, Head BP, Niesman IR, Jennings M. Mechanisms of cardiac protection from ischemia/reperfusion injury: a role for caveolae and caveolin-1. FASEB J. 2007;21:1565–74.
  • Das M, Cui J, Das DK. Generation of survival signal by differential interaction of p38MAPKalpha and p38MAPKbeta with caveolin-1 and caveolin-3 in the adapted heart. J Mol Cell Cardiol. 2007;42:206–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.