3,981
Views
32
CrossRef citations to date
0
Altmetric
Review Article

Pathophysiology of salt sensitivity hypertension

&
Pages S119-S126 | Received 15 Nov 2011, Accepted 15 Feb 2012, Published online: 19 Jun 2012

References

  • Fujita T, Henry WL, Bartter FC, Lake CR, Delea CS. Factors influencing blood pressure in salt-sensitive patients with hypertension. Am J Med. 1980;69:334–44.
  • Luft FC, Weinberger MH. Heterogeneous responses to changes in dietary salt intake: the salt-sensitivity paradigm. Am J Clin Nutr. 1997;65(Suppl):612S–7S.
  • Fujita T, Noda H, Ando K. Sodium susceptibility and potassium effects in young patients with borderline hypertension. Circulation. 1984;69:468–76.
  • Fujita T, Ando K. Hemodynamic and endocrine changes associated with potassium supplementation in sodium-loaded hypertensives. Hypertension. 1984;6:184–92.
  • Ando K, Fujita M. Reactive oxygen species and the central nervous system in salt-sensitive hypertension: possible relationship to obesity-induced hypertension. Clin Exp Pharmacol Physiol. 2012;39:111–6.
  • Guyton AC. Kidneys and fluids in pressure regulation. Small volume but large pressure changes. Hypertension. 1992;19 (Suppl 1):l2–8.
  • Hall JE, Brands MW, Henegar JR. Angiotensin II and long-term arterial pressure regulation: the overriding dominance of the kidney. J Am Soc Nephrol. 1999;10 (Suppl 12):S258–65.
  • Dahl LK, Heine M, Thompson K. Genetic influence of the kidneys on blood pressure. Evidence from chronic renal homografts in rats with opposite predispositions to hypertension. Circ Res. 1974;40:94–101.
  • Crowley SD, Gurley SB, Herrera MJ, Ruiz P, Griffiths R, Kumar AP, . Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc Natl Acad Sci U S A. 2006;103:17985–90.
  • Li Y, Yamada H, Kita Y, Kunimi M, Horita S, Suzuki M, . Roles of ERK and cPLA2 in the angiotensin II-mediated biphasic regulation of Na+-HCO3− transport. J Am Soc Nephrol. 2008;19:252–9.
  • Horita S, Zheng Y, Hara C, Yamada H, Kunimi M, Taniguchi S, . Biphasic regulation of Na+ -HCO3− cotransporter by angiotensin II type 1A receptor. Hypertension. 2002;40:707–12.
  • Gurley SB, Riquier-Brison AD, Schnermann J, Sparks MA, Allen AM, Haase VH, . AT1A angiotensin receptors in the renal proximal tubule regulate blood pressure. Cell Metab. 2011;13:469–75.
  • Shibata S, Mu SY, Kawarazaki H, Muraoka K, Ishizawa K, Yoshida S, . Rac1 GTPase in rodent kidneys is essential for salt-sensitive hypertension via a mineralocorticoid receptor-dependent pathway. J Clin Invest. 2011;121:3233–43.
  • Shibata S, Nagase M, Yoshida S, Kawarazaki W, Kurihara H, Tanaka H, . Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat Med. 2008;14:1370–6.
  • Mu SY, Shimosawa T, Ogura S, Wang H, Uetake U, Kawakami-Mori F, . Epigenetic modulation of the renal β-adrenergic–WNK4 pathway in salt-sensitive hypertension. Nat Med. 2011;17:573–80.
  • Xu G, Liu A, Liu X. Aldosterone induces collagen synthesis via activation of extracellular signal-regulated kinase 1 and 2 in renal proximal tubules. Nephrology. 2008;13:694–701.
  • Pinto V, Pinho MJ, Hopfer U, Jose PA, Soares-da-Silva P. Oxidative stress and the genomic regulation of aldosteronestimulated NHE1 activity in SHR renal proximal tubular cells. Mol Cell Biochem. 2008;310:191–201.
  • Drumm K, Kress TR, Gassner B, Krug AW, Gekle M. Aldosterone stimulates activity and surface expression of NHE3 in human primary renal proximal tubule epithelial cells (RPTEC). Cell Physiol Biochem. 2006;17:21–8.
  • Engeli S, Böhnke J, Gorzelniak K, Janke J, Schling P, Bader M, . Weight loss and the renin-angiotensin-aldosterone system. Hypertension. 2005;45:356–62.
  • Bentley-Lewis R, Adler GK, Perlstein T, Seely EW, Hopkins PN, Williams GH, . Body mass index predicts aldosterone production in normotensive adults on a high-salt diet. J Clin Endocrinol Metab. 2007;92:4472–5.
  • Briet M, Schiffrin EL. The role of aldosterone in the metabolic syndrome. Curr Hypertens Rep. 2011;13:163–72.
  • Nagase M, Yoshida S, Shibata S, Nagase T, Gotoda T, Ando K, . Enhanced aldosterone signaling in the early nephropathy of rats with metabolic syndrome: possible contribution of fat-derived factors. J Am Soc Nephrol. 2006;17:3438–46.
  • Goodfriend TL, Ball DL, Egan BM, Campbell WB, Nithipatikom K. Epoxy-keto derivative of linoleic acid stimulates aldosterone secretion. Hypertension. 2004;43:358–63.
  • Wong GW, Wang J, Hug C, Tsao TS, Lodish HF. A family of Acrp30/adiponectin structural and functional paralogs. Proc Natl Acad Sci U S A. 2004;101:10302–7.
  • Rocchini AP, Key J, Bondie D, Chico R, Moorehead C, Katch V, . The effect of weight loss on the sensitivity of blood pressure to sodium in obese adolescents. N Engl J Med. 1989;321:580–5.
  • Nagase M, Matsui H, Shibata S, Gotoda T, Fujita T. Salt-induced nephropathy in obese spontaneously hypertensive rats via paradoxical activation of the mineralocorticoid receptor: role of oxidative stress. Hypertension. 2007;50: 877–83.
  • Matsui H, Ando K, Kawarazaki H, Nagae A, Fujita M, Shimosawa T, . Salt excess causes left ventricular diastolic dysfunction in rats with metabolic disorder. Hypertension. 2008;52:287–94.
  • Rubino D, Driggers P, Arbit D, Kemp L, Miller B, Coso O, . Characterization of Brx, a novel Dbl family member that modulates estrogen receptor action. Oncogene. 1998; 16:2513–26.
  • Su LF, Knoblauch R, Garabedian MJ. Rho GTPases as modulators of the estrogen receptor transcriptional response. J Biol Chem. 2001;276:3231–7.
  • Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins. Physiol Rev. 2001;81:153–208.
  • Wu X, Tu X, Joeng KS, Hilton MJ, Williams DA, Long F. Rac1 activation controls nuclear localization of beta-catenin during canonical Wnt signaling. Cell. 2008;133:340–53.
  • Franceschini N, MacCluer JW, Göring HH, Cole SA, Rose KM, Almasy L, . A quantitative trait loci-specific gene-by-sex interaction on systolic blood pressure among American Indians: the Strong Heart Family Study. Hypertension. 2006;48:266–70.
  • Wilk JB, Djousse L, Arnett DK, Hunt SC, Province MA, Heiss G, . Genome-wide linkage analyses for age at diagnosis of hypertension and early-onset hypertension in the HyperGEN study. Am J Hypertens. 2004;17:839–44.
  • Zicha J, Kunes J, Jelínek J. Experimental hypertension in young and adult animals. Hypertension. 1986;8:1096–104.
  • Kawarazaki H, Ando K, Nagae A, Fujita M, Matsui H, Fujita T. Mineralocorticoid receptor activation contributes to salt-induced hypertension and renal injury in prepubertal Dahl salt-sensitive rats. Nephrol Dial Transplant. 2010;25:2879–89.
  • Kawarazaki H, Ando K, Fujita M, Matsui H, Nagae A, Muraoka K, . Mineralocorticoid receptor activation: a major contributor to salt-induced renal injury and hypertension in young rats. Am J Physiol Renal Physiol. 2011;300: F1402–9.
  • Fiselier TJ, Lijnen P, Monnens L, van Munster P, Jansen M, Peer P. Levels of renin, angiotensin I and II, angiotensin-converting enzyme and aldosterone in infancy and childhood. Eur J Pediatr. 1983;141:3–7.
  • Vasan RS, Evans JC, Larson MG, Wilson PW, Meigs JB, Rifai N, . Serum aldosterone and the incidence of hypertension in nonhypertensive persons. N Engl J Med. 2004;351:33–41.
  • Geleijnse JM, Hofman A, Witteman JC, Hazebroek AA, Valkenburg HA, Grobbee DE. Long-term effects of neonatal sodium restriction on blood pressure. Hypertension. 1997; 29:913–7.
  • Stamler J, Rose G, Elliott P, Dyer A, Marmot M, Kesteloot H, . Findings of the International Cooperative INTERSALT Study. Hypertension. 1991;17(Suppl):I9–15.
  • Fujita T, Sato Y. Role of hypothalamic-renal noradrenergic systems in hypotensive action of potassium. Hypertension. 1992;20:466–72.
  • Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, . Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373: 1275–81.
  • Fujita T, Ando K, Ogata E. Systemic and regional hemodynamics in patients with salt-sensitive hypertension. Hypertension. 1990;16:235–44.
  • Brod J, Fencl V, Hejl Z, Jirka J. Circulatory changes underlying blood pressure elevation during acute emotional stress (mental arithmetic) in normotensive and hypertensive subjects. Clin Sci. 1959;18:269–79.
  • Ono A, Kuwaki T, Cao WH, Kumada M, Fujita T. High calcium diet prevents baroreflex impairment in salt-loaded spontaneously hypertensive rats. Hypertension. 1994;24:83–90.
  • Ono A, Kuwaki T, Kumada M, Fujita T. Differential central modulation of the baroreflex by salt loading in normotensive and spontaneously hypertensive rats. Hypertension. 1997; 29:808–14.
  • Matsui H, Shimosawa T, Uetake Y, Wang H, Ogura S, Kaneko T, . Protective effect of potassium against the hypertensive cardiac dysfunction. Hypertension. 2006;48:225–31.
  • Kido M, Ando K, Oba S, Fujita T. Renoprotective effect of pravastatin in salt-loaded Dahl salt-sensitive rats. Hypertens Res. 2005;28:1009–15.
  • Kido M, Ando K, Onozato ML, Tojo A, Yoshikawa M, Ogita T, . Protective effect of dietary potassium against the vascular injury in salt-sensitive hypertension. Hypertension. 2008;51:225–31.
  • Xu H, Fink GD, Galligan JJ. Nitric oxide-independent effects of tempol on sympathetic nerve activity and blood pressure in DOCA-salt rats. Am J Physiol Heart Circ Physiol. 2002;283:H885–92.
  • Shokoji T, Nishiyama A, Fujisawa Y, Hitomi H, Kiyomoto H, Takahashi N, . Renal sympathetic nerve responses to tempol in spontaneously hypertensive rats. Hypertension. 2003;41:266–73.
  • Fujita M, Kuwaki T, Ando K, Fujita T. Sympatho-inhibitory action of endogenous adrenomedullin through inhibition of oxidative stress in the brain. Hypertension. 2005;45: 1165–72.
  • Fujita M, Ando K, Kawarazaki H, Kawarasaki C, Muraoka K, Ohtsu H, . Sympathoexcitation by brain oxidative stress mediates arterial pressure elevation in salt-induced chronic kidney disease. Hypertension. 2012;59:105–12.
  • Hoorn EJ, Nelson JH, McCormick JA, Ellison DH. The WNK kinase network regulating sodium, potassium, and blood pressure. J Am Soc Nephrol. 2011;22:605–14.
  • Kahle KT, Wilson FH, Leng O, Lalioti MD, O'Connell AD, Dong K, . WNK4 regulates the balance between renal NaCl reabsorption and K+secretion. Nat Genet. 2003;35:372–6.
  • Yang CL, Zhu X, Ellison DH. The thiazide-sensitive Na-Cl cotransporter is regulated by a WNK kinase signaling complex. J Clin Invest. 2007;117:3403–11.
  • Ring AM, Cheng SX, Leng Q, Kahle KT, Rinehart J, Lalioti MD, . WNK4 regulates activity of the epithelial Na+ channel in vitro and in vivo. Proc Natl Acad Sci U S A. 2007;104:4020–4.
  • Lalioti MD, Zhang J, Volkman HM, Kahle KT, Hoffmann KE, Toka HR, . Wnk4 controls blood pressure and potassium homeostasis via regulation of mass and activity of the distal convoluted tubule. Nat Genet. 2006;38:1124–32.
  • O'Reilly M, Marshall E, Macgillivray T, Mittal M, Xue W, Kenyon CJ, . Dietary electrolyte-driven responses in the renal WNK kinase pathway in vivo. J Am Soc Nephrol. 2006;17:2402–13.
  • Li J, Wang D. Function and regulation of epithelial sodium transporters in the kidney of a salt-sensitive hypertensive rat model. J Hypertens. 2007;25:1065–72.
  • Vasquez MM, Castro R, Seidner SR, Henson BM, Ashton DJ, Mustafa SB. Induction of serum- and glucocorticoid-induced kinase-1(SGK1) by cAMP regulates increases in α-ENaC. J Cell Physiol. 2008;217:632–42.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.