3,298
Views
78
CrossRef citations to date
0
Altmetric
Original Article

Phospholamban and cardiac contractility

&
Pages 572-578 | Published online: 08 Jul 2009

References

  • Fabiato A. Simulated calcium current can both cause calcium loading in and trigger calcium release from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol 1985; 85: 291–320
  • Bers DM, Bassani JW, Bassani RA. Na-Ca exchange and Ca fluxes during contraction and relaxation in mammalian ventricular muscle. Ann N Y Acad Sci 1996; 779: 430–42
  • MacLennan DH, Reithmeier RA. Ion tamers. Nat Struct Biol 1998; 5: 409–11
  • Michalak M, Corbett EF, Mesaeli N, Nakamura K, Opas M. Calreticulin: one protein, one gene, many functions. Biochem J 1999; 344: 281–92
  • Suk JY, Kim YS, Park WJ. HRC (histidine-rich Ca2+ binding protein) resides in the lumen of sarcoplasmic reticulum as a multimer. Biochem Biophys Res Commun 1999; 263: 667–71
  • Ganim JR, Luo W, Ponniah S, Grupp I, Kim HW, Ferguson DG. Mouse phospholamban gene expression during development in vivo and in vitro. Circ Res 1992; 71: 1021–30
  • Lalli MJ, Shimizu S, Sutliff RL, Kranias EG, Paul RJ. [Ca2+]i homeostasis and cyclic nucleotide relaxation in aorta of phospholamban-deficient mice. Am J Physiol 1999; 277: H963–70
  • Sutliff RL, Hoying JB, Kadambi VJ, Kranias EG, Paul RJ. Phospholamban is present in endothelial cells and modulates endotheliunvdependent relaxation. Evidence from phospholamban gene-ablated mice. Circ Res 1999; 84: 360–4
  • Kranias EG, Solaro RJ. Phosphorylation of troponin I and phospholamban during catecholamine stimulation of rabbit heart. Nature 1982; 298: 182–4
  • Le Peuch CJ, Guilleux JC, Demaille JG. Phospholamban phosphorylation in the perfused rat heart is not solely dependent on beta-adrenergic stimulation. FEBS Lett 1980; 114: 165–8
  • Simmerman HK, Collins JH, Theibert JL, Wegener AD, Jones LR. Sequence analysis of phospholamban. Identification of phosphorylation sites and two major structural domains. J Biol Chem 1986; 261: 13333–41
  • Kadambi VJ, Kranias EG. Phospholamban: a protein coming of age. Biochem Biophys Res Commun 1997; 239: 1–5
  • Kranias EG. Regulation of calcium transport by protein phosphatase activity associated with cardiac sarcoplasmic reticulum. J Biol Chem 1985; 260: 11006–10
  • Mundina-Weilenmann C, Vittone L, Ortale M, De Cingolani GC, Mattiazzi A. Immunodetection of phosphorylation sites gives new insights into the mechanisms underlying phospholamban phosphorylation in the intact heart. J Biol Chem 1996; 271: 33561–7
  • Kuschel M, Karczewski P, Hempel P, Schlegel WP, Krause EG, Bartel S. Ser16 prevails over Thr17 phospholamban phosphorylation in the beta-adrenergic regulation of cardiac relaxation. Am J Physiol 1999; 276: H1625–33
  • Kadambi VJ, Ponniah S, Harrer JM, Hoit BD, Dorn GW, 2nd, Walsh RA. Cardiac-specific overexpression of phospholamban alters calcium kinetics and resultant cardiomyocyte mechanics in transgenic mice. J Clin invest 1996; 97: 533–9
  • Luo W, Chu G, Sato Y, Zhou Z, Kadambi VJ, Kranias EG. Transgenic approaches to define the functional role of dual site phospholamban phosphorylation. J Biol Chem 1998; 273: 4734–9
  • MacLennan DH, Toyofuku T, Kimura Y. Sites of regulatory interaction between calcium ATPases and phospholamban. Basic Res Cardiol 1997; 92: 11–5
  • Simmerman HK, Jones LR. Phospholamban: protein structure, mechanism of action, and role in cardiac function. Physiol Rev 1998; 78: 921–47
  • Luo W, Grupp IL, Harrer J, Ponniah S, Grupp G, Duffy JJ. Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation. Circ Res 1994; 75: 401–9
  • Jones LR, Simmerman HK, Wilson WW, Gurd FR, Wegener AD. Purification and characterization of phospholamban from canine cardiac sarcoplasmic reticulum. J Biol Chem 1985; 260: 7721–30
  • Wolska BM, Stojanovic MO, Luo W, Kranias EG, Solaro RJ. Effect of ablation of phospholamban on dynamics of cardiac myocyte contraction and intracellular Ca2+. Am J Physiol 1996; 271: C391–7
  • Li L, Chu G, Kranias EG, Bers DM. Cardiac myocyte calcium transport in phospholamban knockout mouse: relaxation and endogenous CaMKII effects. Am J Physiol 1998; 274: H1335–47
  • Santana LF, Kranias EG, Lederer WJ. Calcium sparks and excitation-contraction coupling in phospholamban-deficient mouse ventricular myocytes. J Physiol (Lond) 1997; 503: 21–9
  • Masaki H, Sato Y, Luo W, Kranias EG, Yatani A. Phospholamban deficiency alters inactivation kinetics of L-type Ca2+ channels in mouse ventricular myocytes. Am J Physiol 1997; 272: H606–12
  • Lorenz JN, Kranias EG. Regulatory effects of phospholamban on cardiac function in intact mice. Am J Physiol 1997; 273: H2826–31
  • Hoit BD, Khoury SF, Kranias EG, Ball N, Walsh RA. In vivo echocardiographic detection of enhanced left ventricular function in gene-targeted mice with phospholamban deficiency. Circ Res 1995; 77: 632–7
  • Kiss E, Edes I, Sato Y, Luo W, Liggett SB, Kranias EG. Beta-adrenergic regulation of cAMP and protein phosphorylation in phospholamban-knockout mouse hearts. Am J Physiol 1997; 272: H785–90
  • Chu G, Luo W, Slack JP, Tilgmann C, Sweet WE, Spindler M. Compensatory mechanisms associated with the hyperdynamic function of phospholamban-deficient mouse hearts. Circ Res 1996; 79: 1064–76
  • Schwinger RH, Brixius K, Savvidou-Zaroti P, Bolck B, Zobel C, Frank K. The enhanced contractility in phospholamban deficient mouse hearts is not associated with alterations in (Ca2+)-sensitivity or myosin ATPase-activity of the contractile proteins. Basic Res Cardiol 2000; 95: 12–8
  • Koss KL, Kranias EG. Phospholamban: a prominent regulator of myocardial contractility. Circ Res 1996; 79: 1059–63
  • Brittsan AG, Carr AN, Schmidt AG, Kranias EG. Maximal inhibition of SERCA2 Ca(2+) affinity by phospholamban in transgenic hearts overexpressing a non-phosphorylatable form of phospholamban. J Biol Chem 2000; 275: 12129–35
  • Koss KL, Grupp IL, Kranias EG. The relative phospholamban and SERCA2 ratio: a critical determinant of myocardial contractility. Basic Res Cardiol 1997; 92: 17–24
  • Beuckelmann DJ, Nabauer M, Erdmann E. Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation 1992; 85: 1046–55
  • Dipla K, Mattiello JA, Margulies KB, Jeevanandam V, Houser SR. The sarcoplasmic reticulum and the Na+/Ca2+ exchanger both contribute to the Ca2+ transient of failing human ventricular myocytes. Circ Res 1999; 84: 435–44
  • Hasenfuss G, Reinecke H, Studer R, Meyer M, Pieske B, Holtz J. Relation between myocardial function and expression of sarcoplasmic reticulum Ca(2+)-ATPase in failing and nonfailing human myocardium. Circ Res 1994; 75: 434–42
  • Schwinger RH, Bohm M, Schmidt U, Karczewski P, Bavendiek U, Flesch M. Unchanged protein levels of SERCA II and phospholamban but reduced Ca2+ uptake and Ca(2+)-ATPase activity of cardiac sarcoplasmic reticulum from dilated cardiomyopathy patients compared with patients with nonfailing hearts. Circulation 1995; 92: 3220–8
  • Frank K, Bolck B, Bavendiek U, Schwinger RH. Frequency dependent force generation correlates with sarcoplasmic calcium ATPase activity in human myocardium. Basic Res Cardiol 1998; 93: 405–11
  • Movsesian MA, Karimi M, Green K, Jones LR. Ca(2+)-transporting ATPase, phospholamban, and calsequestrin levels in nonfailing and failing human myocardium. Circulation 1994; 90: 653–7
  • Meyer M, Schillinger W, Pieske B, Holubarsch C, Heilmann C, Posival H. Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 1995; 92: 778–84
  • Linck B, Boknik P, Eschenhagen T, Muller FU, Neumann J, Nose M. Messenger RNA expression and immunological quantification of phospholamban and SR-Ca(2+)-ATPase in failing and nonfailing human hearts. Cardiovasc Res 1996; 31: 625–32
  • Schwinger RH, Munch G, Bolck B, Karczewski P, Krause EG, Erdmann E. Reduced Ca(2+)-sensitivity of SERCA 2a in failing human myocardium due to reduced serin-16 phospholamban phosphorylation. J Mol Cell Cardiol 1999; 31: 479–91
  • Dash R, Frank K, Moravec CS, Kranias EG. Phospholamban phosphorylation and the apparent affinity of the sarcoplasmic Ca2+-ATPase for Ca2+ are depressed in failing human myocardium (abstract). Circulation 1999; 100: 2202
  • Bristow MR, Ginsburg R, Minobe W, Cubicciotti RS, Sageman WS, Lurie K. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med 1982; 307: 205–11
  • Neumann J, Schmitz W, Scholz H, Von Meyerinck L, Doring V, Kalmar P. Increase in myocardial Gi-proteins in heart failure. Lancet 1988; 2: 936–7
  • Ungerer M, Bohm M, Eke JS, Erdmann E, Lohse MJ. Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation 1993; 87: 454–63
  • Hajjar RJ, Schmidt U, Kang JX, Matsui T, Rosenzweig A. Adenoviral gene transfer of phospholamban in isolated rat cardiomyocytes. Rescue effects by concomitant gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase. Circ Res 1997; 81: 145–53
  • Del Monte F, Harding SE, Schmidt U, Matsui T, Kang ZB, Dec GW. Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation 1999; 100: 2308–11
  • Miyamoto MI, Del Monte F, Schmidt U, DiSalvo TS, Kang ZB, Matsui T. Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc Natl Acad Sci USA 2000; 97: 793–8
  • Minamisawa S, Hoshijima M, Chu G, Ward CA, Frank K, Gu Y. Chronic phospholamban-sarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy. Cell 1999; 99: 313–22
  • Eizema K, Fechner H, Bezstarosti K, Schneider-Rasp S, Van Der Laarse A, Wang H. Adenovirus-based phospholamban antisense expression as a novel approach to improve cardiac contractile dysfunction: comparison of a constitutive viral versus an endothelin-1-responsive cardiac promoter. Circulation 2000; 101: 2193–9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.