425
Views
65
CrossRef citations to date
0
Altmetric
Original Article

Molecular genetics of prostate cancer

&
Pages 130-141 | Published online: 08 Jul 2009

References

  • Kosary CL, Ries LAG, Miller BA, Hankey BF, Harras A, Edwards BK. SEER cancer statistics review, 1973–1992: tables and graphs. National Cancer Institute, Bethesda, MD 1995, NIH Pub No 96–2789
  • Finnish Cancer Registry. Cancer incidence in Finland 1995. Cancer Society of Finland, HelsinkiFinland 1997, Pub No 58
  • Gittes RF. Carcinoma of the prostate. N. Engl J Med 1991; 24: 324, 236–45.
  • DeKernion J, Belldegrun A, Naitoh J. Surgical treatment of localized prostate cancer: indications, technique and results. New perspectives in prostate cancer, A Belldegrun, RS Kirby, T Oliver. Isis Medical Media Ltd, Oxford 1998; 185–203
  • Palmberg C, Koivisto P, Visakorpi T, Tammela TLJ. PSA decline is an independent prognostic marker in hormonally treated prostate cancer. Eur Urol 1999; 36: 191–6
  • Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61: 759–67
  • Kallioniemi OP, Visakorpi T. Genetic basis and clonal evolution of human prostate cancer. Adv Cancer Res 1996; 68: 225–55
  • Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature 1998; 396: 643–9
  • Steinberg GD, Carter BS, Beaty TH, Childs B, Walsh PC. Family history and the risk of prostate cancer. Prostate 1990; 17: 337–47
  • Carter BS, Beaty TH, Steinberg GD, Childs B, Walsh PC. Mendelian inheritance of familial prostate cancer. Proc Natl Acad Sci U S A 1992; 89: 3367–71
  • Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M. Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 2000; 343: 78–85
  • Ahlbom A, Lichtenstein P, Malmstrom H, Feychting M, Hemminki K, Pedersen NL. Cancer in twins: genetic and nongenetic familial risk factors. J Natl Cancer Inst 1997; 89: 287–93
  • Verkasalo PK, Kaprio J, Koskenvuo M, Pukkala E. Genetic predisposition, environment and cancer incidence: a nationwide twin study in Finland, 1976–1995. Int J Cancer 1999; 83: 743–9
  • Narod SA, Dupont A, Cusan L, Diamond P, Gomez JL, Suburu R. The impact of family history on early detection of prostate cancer. Nat Med 1995; 1: 99–101
  • Schaid DJ, McDonnell SK, Blute ML, Thibodeau SN. Evidence for autosomal dominant inheritance of prostate cancer. Am J Hum Genet 1998; 62: 1425–38
  • Monroe KR, Yu MC, Kolonel LN, Coetzee GA, Wilkens LR, Ross RK. Evidence of an X-linked or recessive genetic component to prostate cancer risk. Nat Med 1995; 1: 827–9
  • Grönberg H, Damber L, Damber JE, Iselius L. Segregation analysis of prostate cancer in Sweden: support for dominant inheritance. Am J Epidemiol 1997; 146: 552–7
  • Smith JR, Freije D, Carpten JD, Gronberg H, Xu J, Isaacs SD. Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science 1996; 274: 1371–4
  • Berthon P, Valeri A, Cohen-Akenine A, Drelon E, Paiss T, Wohr G. Predisposing gene for early-onset prostate cancer, localized on chromosome lq42.2–43. Am J Hum Genet 1998; 62: 1416–24
  • Gibbs M, Stanford JL, McIndoe RA, Jarvik GP, Kolb S, Goode E. Evidence for a rare prostate cancer-susceptibility locus at chromosome 1p36. Am J Hum Genet 1999; 64: 776–87
  • Xu J, Meyers D, Freije D, Isaacs S, Wiley K, Nusskern D. Evidence for a prostate cancer susceptibility locus on the X chromosome. Nat Genet 1998; 20: 175–9
  • Berry R, Schroeder JJ, French AJ, McDonnell SK, Peterson BJ, Cunningham JM. Evidence for a prostate cancer-susceptibility locus on chromosome 20. Am J Hum Genet 2000; 67: 82–91
  • Suarez BK, Lin J, Burmester JK, Broman KW, Weber JL, Banerjee TK. A genome screen of multiplex sibships with prostate cancer. Am J Hum Genet 2000; 66: 933–44
  • Xu J. Combined analysis of hereditary prostate cancer linkage to 1q24–25: results from 772 hereditary prostate cancer families from the International Consortium for Prostate Cancer Genetics. Am J Hum Genet 2000; 66: 945–57
  • Berry R, Schaid DJ, Smith JR, French AJ, Schroeder JJ, McDonnell SK. Linkage analyses at the chromosome 1 loci 1q24–25 (HPC1), 1q42.2–43 (PCAP), and 1p36 (CAPB) in families with hereditary prostate cancer. Am J Hum Genet 2000; 66: 539–46
  • Lange EM, Chen H, Brierley K, Perrone EE, Bock CH, Gillanders E. Linkage analysis of 153 prostate cancer families over a 30-cM region containing the putative susceptibility locus HPCX. Clin Cancer Res 1999; 5: 4013–20
  • Jarvik GP, Stanford JL, Goode EL, McIndoe R, Kolb S, Gibbs M. Confirmation of prostate cancer susceptibility genes using high-risk families. J Natl Cancer Inst Monogr 1999; 26: 81–7
  • Goode EL, Stanford JL, Chakrabarti L, Gibbs M, Kolb S, McIndoe RA. Linkage analysis of 150 high-risk prostate cancer families at 1q24–25. Genet Epidemiol 2000; 18: 251–75
  • Peters MA, Jarvik GP, Janer M, Chakrabarti L, Kolb S, Goode EL. Genetic linkage analysis of prostate cancer families to Xq27–28. Hum Hered 2001; 51: 107–13
  • Gibbs M, Chakrabarti L, Stanford JL, Goode EL, Kolb S, Schuster EF. Analysis of chromosome 1q42.2–43 in 152 families with high risk of prostate cancer. Am J Hum Genet 1999; 64: 1087–95
  • Cooney KA, McCarthy JD, Lange E, Huang L, Miesfeldt S, Montie JE. Prostate cancer susceptibility locus on chromosome 1q: a confirmatory study. J Natl Cancer Inst 1997; 89: 955–9
  • McIndoe RA, Stanford JL, Gibbs M, Jarvik GP, Brandzel S, Neal CL. Linkage analysis of 49 high-risk families does not support a common familial prostate cancer-susceptibility gene at 1q24–25. Am J Hum Genet 1997; 61: 347–53
  • Neuhausen SL, Farnham JM, Kort E, Tavtigian SV, Skolnick MH, Cannon-Albright LA. Prostate cancer susceptibility locus HPC1 in Utah high-risk pedigrees. Hum Mol Genet 1999; 8: 2437–42
  • Eeles RA, Durocher F, Edwards S, Teare D, Badzioch M, Hamoudi R. Linkage analysis of chromosome 1q markers in 136 prostate cancer families. The Cancer Research Campaign/British Prostate Group U.K. Familial Prostate Cancer Study Collaborators. Am J Hum Genet 1998; 62: 653–8
  • Tavtigian J, Simard F, Teng DH, Abtin V, Baumgard M, Beck A. A candidate prostate cancer susceptibility gene at chromosome 17p. Nat Genet 2001; 27: 172–80
  • Ostrander EA, Stanford JL. Genetics of prostate cancer: too many loci, too few genes. Am J Hum Genet 2000; 67: 1367–75
  • Chamberlain NL, Driver ED, Miesfeld RL. The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res 1994; 22: 3181–6
  • Kazemi-Esfarjani P, Trifiro MA, Pinsky L. Evidence for a repressive function of the long polyglutamine tract in the human androgen receptor: possible pathogenetic relevance for the (CAG)n-expanded neuronopathies. Hum Mol Genet 1995; 4: 523–7
  • Irvine RA, Yu MC, Ross RK, Coetzee GA. The CAG and GGC microsatellites of the androgen receptor gene are in linkage disequilibrium in men with prostate cancer. Cancer Res 1995; 55: 1937–40
  • Hsing AW, Gao YT, Wu G, Wang X, Deng J, Chen YL. Polymorphic CAG and GGN repeat lengths in the androgen receptor gene and prostate cancer risk: a population-based case-control study in China. Cancer Res 2000; 60: 5111–6
  • Giovannucci E, Stampfer MJ, Krithivas K, Brown M, Dahl D, Brufsky A. The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc Natl Acad Sci U S A 1997; 94: 3320–3
  • Hakimi JM, Schoenberg MP, Rondinelli RH, Piantadosi S, Barrack ER. Androgen receptor variants with short glutamine or glycine repeats may identify unique subpopulations of men with prostate cancer. Clin Cancer Res 1997; 3: 1599–608
  • Ingles SA, Ross RK, Yu MC, Irvine RA, La Pera G, Haile RW. Association of prostate cancer risk with genetic polymorphisms in vitamin D receptor and androgen receptor. J Natl Cancer Inst 1997; 89: 166–70
  • Stanford JL, Just JJ, Gibbs M, Wicklund KG, Neal CL, Blumenstein BA. Polymorphic repeats in the androgen receptor gene: molecular markers of prostate cancer risk. Cancer Res 1997; 57: 1194–8
  • Xue W, Irvine RA, Yu MC, Ross RK, Coetzee GA, Ingles SA. Susceptibility to prostate cancer: interaction between genotypes at the androgen receptor and prostate-specific antigen loci. Cancer Res 2000; 60: 839–41
  • Edwards SM, Badzioch MD, Minter R, Hamoudi R, Collins N, Ardern-Jones A. Androgen receptor polymorphisms: association with prostate cancer risk, relapse and overall survival. Int J Cancer 1999; 84: 458–65
  • Bratt O, Borg A, Kristoffersson U, Lundgren R, Zhang QX, Olsson H. CAG repeat length in the androgen receptor gene is related to age at diagnosis of prostate cancer and response to endocrine therapy, but not to prostate cancer risk. Br J Cancer 1999; 81: 672–6
  • Correa-Cerro L, Wohr G, Haussler J, Berthon P, Drelon E, Mangin P. (CAG)nCAA and GGN repeats in the human androgen receptor gene are not associated with prostate cancer in a French-German population. Eur J Hum Genet 1999; 7: 357–62
  • Mononen N, Syrjäkoski K, Matikainen M, Tammela TL, Schleutker J, Kallioniemi OP. Two percent of Finnish prostate cancer patients have a germ-line mutation in the hormone-binding domain of the androgen receptor gene. Cancer Res 2000; 60: 6479–81
  • Elo JP, Kvist L, Leinonen K, Isomaa V, Henttu P, Lukkarinen O. Mutated human androgen receptor gene detected in a prostatic cancer patient is also activated by estradiol. J Clin Endocrinol Metab 1995; 80: 3494–500
  • Skowronski RJ, Peehl DM, Feldman D. Vitamin D and prostate cancer: 1,25 dihydroxyvitamin D3 receptors and actions in human prostate cancer cell lines. Endocrinology 1993; 132: 1952–60
  • Peehl DM, Skowronski RJ, Leung GK, Wong ST, Stamey TA, Feldman D. Antiproliferative effects of 1,25-dihydroxy-vitamin D3 on primary cultures of human prostatic cells. Cancer Res 1994; 54: 805–10
  • Corder EH, Guess HA, Hulka BS, Friedman GD, Sadler M, Vollmer RT. Vitamin D and prostate cancer: a prediagnostic study with stored sera. Cancer Epidemiol Biomarkers Prev 1993; 2: 467–72
  • Ahonen MH, Tenkanen L, Teppo L, Hakama M, Tuohimaa P. Prostate cancer risk and prediagnostic serum 25-hydroxy-vitamin D levels. Cancer Causes Control 2000; 11: 847–52
  • Taylor JA, Hirvonen A, Watson M, Pittman G, Mohler JL, Bell DA. Association of prostate cancer with vitamin D receptor gene polymorphism. Cancer Res 1996; 56: 4108–10
  • Habuchi T, Suzuki T, Sasaki R, Wang L, Sato K, Satoh S. Association of vitamin D receptor gene polymorphism with prostate cancer and benign prostatic hyperplasia in a Japanese population. Cancer Res 2000; 60: 305–8
  • Blazer DG, 3rd, Umbach DM, Bostick RM, Taylor JA. Vitamin D receptor polymorphisms and prostate cancer. Mol Carcmog 2000; 27: 18–23
  • Ingles SA, Coetzee GA, Ross RK, Henderson BE, Kolonel LN, Crocitto L. Association of prostate cancer with vitamin D receptor haplotypes in African-Americans. Cancer Res 1998; 58: 1620–3
  • Correa-Cerro L, Berthon P, Haussler J, Bochum S, Drelon E, Mangin P. Vitamin D receptor polymorphisms as markers in prostate. Hum Genet 1999; 105: 281–7
  • Watanabe M, Fukutome K, Murata M, Uemura H, Kubota Y, Kawamura J. Significance of vitamin D receptor gene polymorphism for prostate cancer risk in Japanese. Anti cancer Res 1999; 19: 4511–4
  • Furuya Y, Akakura K, Masai M, Ito H. Vitamin D receptor gene polymorphism in Japanese patients with prostate cancer. Endocr J 1999; 46: 467–70
  • Ma J, Stampfer MJ, Gann PH, Hough HL, Giovannucci E, Kelsey KT. Vitamin D receptor polymorphisms, circulating vitamin D metabolites, and risk of prostate cancer in United States physicians. Cancer Epidemiol Biomarkers Prev 1998; 7: 385–90
  • Kantoff PW, Febbo PG, Giovannucci E, Krithivas K, Dahi DM, Chang G. A polymorphism of the 5 alpha-reductase gene and its association with prostate cancer: a case-control analysis. Cancer Epidemiol Biomarkers Prev 1997; 6: 189–92
  • Makridakis NM, Ross RK, Pike MC, Crocitto LE, Kolonel LN, Pearce CL. Association of mis-sense substitution in SRD5A2 gene with prostate cancer in African-American and Hispanic men in Los Angeles, USA. Lancet 1999; 354: 975–8
  • Jaffe JM, Malkowicz SB, Walker AH, MacBride S, Peschel R, Tomaszewski J. Association of SRD5A2 genotype and pathological characteristics of prostate tumors. Cancer Res 2000; 60: 1626–30
  • Rebbeck TR, Walker AH, Zeigler-Johnson C, Weisburg S, Martin AM, Nathanson KL. Association of HPC2/ELAC2 genotypes and prostate cancer. Am J Hum Genet 2000; 67: 1014–9
  • Rebbeck TR, Jaffe JM, Walker AH, Wein AJ, Malkowicz SB. Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J Natl Cancer Inst 1998; 90: 1225–9
  • Habuchi T, Liqing Z, Suzuki T, Sasaki R, Tsuchiya N, Tachiki H. Increased risk of prostate cancer and benign prostatic hyperplasia associated with a CYP17 gene polymorphism with a gene dosage effect. Cancer Res 2000; 60: 5710–3
  • Sandberg AA. Chromosomal abnormalities and related events in prostate cancer. Hum Pathol 1992; 23: 368–80
  • Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 1992; 258: 818–21
  • Visakorpi T, Kallioniemi AH, Syvanen AC, Hyytinen ER, Karhu R, Tammela T. Genetic changes in primary and recurrent prostate cancer by comparative genomic hybridization. Cancer Res 1995; 55: 342–7
  • Joos S, Bergerheim US, Pan Y, Matsuyama H, Bentz M, du Manoir S. Mapping of chromosomal gains and losses in prostate cancer by comparative genomic hybridization. Genes Chromosomes Cancer 1995; 14: 267–76
  • Cher ML, MacGrogan D, Bookstein R, Brown J A, Jenkins RB, Jensen RH. Comparative genomic hybridization, allelic imbalance, and fluorescence in situ hybridization on chromosome 8 in prostate cancer. Genes Chromosomes Cancer 1994; 11: 153–62
  • Cher ML, Bova GS, Moore DH, Small EJ, Carroll PR, Pin SS. Genetic alterations in untreated metastases and androgen independent prostate cancer detected by comparative genomic hybridization and allelotyping. Cancer Res 1996; 56: 3091–02
  • Cher ML, Lewis PE, Banerjee M, Hurley PM, Sakr W, Grignon DJ. A similar pattern of chromosomal alterations in prostate cancers from African-Americans and Caucasian Americans. Clin Cancer Res 1998; 4: 1273–8
  • Nupponen NN, Kakkola L, Koivisto P, Visakorpi T. Genetic alterations in hormone-refractory recurrent prostate carcinomas. Am J Pathol 1998; 153: 141–8
  • Sattler HP, Rohde V, Bonkhoff H, Zwergel T, Wullich B. Comparative genomic hybridization reveals DNA copy number gains to frequently occur in human prostate cancer. Prostate 1999; 39: 79–86
  • Alers JC, Rochat J, Krijtenburg PJ, Hop WC, Kranse R, Rosenberg C. Identification of genetic markers for prostatic cancer progression. Lab Invest 2000; 80: 931–42
  • Bova GS, Carter BS, Bussemakers MJ, Emi M, Fujiwara Y, Kyprianou N. Homozygous deletion and frequent allelic loss of chromosome 8p22 loci in human prostate cancer. Cancer Res 1993; 53: 3869–73
  • MacGrogan D, Levy A, Bostwick D, Wagner M, Wells D, Bookstein R. Loss of chromosome arm 8p loci in prostate cancer: mapping by quantitative allelic imbalance. Genes Chromosomes Cancer 1994; 10: 151–9
  • Vocke CD, Pozzatti RO, Bostwick DG, Florence CD, Jennings SB, Strop SE. Analysis of 99 microdissected prostate carcinomas reveals a high frequency of allelic loss on chromosome 8p12–21. Cancer Res 1996; 56: 2411–6
  • Hyytinen ER, Frierson HF, Jr, Boyd JC, Chung LW, Dong JT. Three distinct regions of allelic loss at 13q14, 13q21–22, and 13q33 in prostate cancer. Genes Chrom Cancer 1999; 25: 108–14
  • Qian J, Jenkins RB, Bostwick DG. Genetic and chromosomal alterations in prostatic intraepithelial neoplasia and carcinoma detected by fluorescence in situ hybridization. Eur Urol 1999; 35: 479–83
  • Bostwick DG, Dundore PA. Biopsy pathology of the prostate. Chapman & Hall Medical, LondonUK 1997
  • Bhatia-Gaur R, Donjacour AA, Sciavolino PJ, Kim M, Desai N, Young P. Roles for Nkx3.1 in prostate development and cancer. Genes Dev 1999; 13: 966–77
  • He WW, Sciavolino PJ, Wing J, Augustus M, Hudson P, Meissner PS. A novel human prostate-specific, androgen-regulated homeobox gene (NKX3.1) that maps to 8p21, a region frequently deleted in prostate cancer. Genomics 1997; 43: 69–77
  • Bowen C, Bubendorf L, Voeller HJ, Slack R, Willi N, Sauter G. Loss of NKX3.1 expression in human prostate cancers correlates with tumor progression. Cancer Res 2000; 60: 6111–5
  • Fujiwara Y, Ohata H, Kuroki T, Koyama K, Tsuchiya E, Monden M. Isolation of a candidate tumor suppressor gene on chromosome 8p21.3-p22 that is homologous to an extracellular domain of the PDGF receptor beta gene. Oncogene 1995; 10: 891–5
  • Bookstein R, Bova GS, MacGrogan D, Levy A, Isaacs WB. Tumour-suppressor genes in prostatic oncogenesis: a positional approach. Br J Urol 1997; 79: 28–36, (Suppl 1)
  • Ishii H, Baffa R, Numata SI, Murakumo Y, Rattan S, Inoue H. The FEZ1 gene at chromosome 8p22 encodes a leucine-zipper protein, and its expression is altered in multiple human tumors. Proc Natl Acad Sci U S A 1999; 96: 3928–33
  • Cooney KA, Wetzel JC, Merajver SD, Macoska JA, Singleton TP, Wojno KJ. Distinct regions of allelic loss on 13q in prostate cancer. Cancer Res 1996; 56: 1142–5
  • Li C, Larsson C, Futreal A, Lancaster J, Phelan C, Aspenblad U. Identification of two distinct deleted regions on chromosome 13 in prostate cancer. Oncogene 1998; 16: 481–7
  • Bookstein R, Rio P, Madreperla SA, Hong F, Allred C, Grizzle WE. Promoter deletion and loss of retinoblastoma gene expression in human prostate carcinoma. Proc Natl Acad Sci U S A 1990; 87: 7762–6
  • Nelson JB, Lee WH, Nguyen SH, Jarrard DF, Brooks JD, Magnuson SR. Methylation of the 5′ CpG island of the endothelin B receptor gene is common in human prostate cancer. Cancer Res 1997; 57: 35–7
  • Dong JT, Chen C, Stultz BG, Isaacs JT, Frierson HF, Jr. Deletion at 13q21 is associated with aggressive prostate cancers. Cancer Res 2000; 60: 3880–3
  • Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM. Human c-myc oncogene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci U S A 1982; 79: 7824–7
  • Jenkins RB, Qian J, Lieber MM, Bostwick DG. Detection of c-myc oncogene amplification and chromosomal anomalies in metastatic prostatic carcinoma by fluorescence in situ hybridization. Cancer Res 1997; 57: 524–31
  • Bubendorf L, Kononen J, Koivisto P, Schraml P, Moch H, Gasser TC. Survey of gene amplifications during prostate cancer progression by high-throughout fluorescence in situ hybridization on tissue microarrays. Cancer Res 1999; 59: 803–6
  • Sato K, Qian J, Slezak JM, Lieber MM, Bostwick DG, Bergstralh EJ. Clinical significance of alterations of chromosome 8 in high-grade, advanced, nonmetastatic prostate carcinoma. J Natl Cancer Inst 1999; 91: 1574–80
  • Bieche I, Laurendeau I, Tozlu S, Olivi M, Vidaud D, Lidereau R. Quantitation of MYC gene expression in sporadic breast tumors with a real-time reverse transcription-PCR assay. Cancer Res 1999; 59: 2759–65
  • Nupponen NN, Porkka K, Kakkola L, Borg A, Tanner M, Isola J. Amplification and overexpression of p40 subunit of eukaryotic translation initation factor 3 in breast and prostate cancer. Am J Pathol 1999; 154: 1777–83
  • Nupponen NN, Isola J, Visakorpi T. Mapping the amplification of EIF3S3 in breast and prostate cancer. Genes Chrom Cancer 2000; 28: 203–10
  • Reiter RE, Gu Z, Watabe T, Thomas G, Szigeti K, Davis E. Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proc Natl Acad Sci U S A 1998; 95: 1735–40
  • Reiter RE, Sato I, Thomas G, Qian J, Gu Z, Watabe T. Coamplification of prostate stem cell antigen (PSCA) and MYC in locally advanced prostate cancer. Genes Chromosomes Cancer 2000; 27: 95–103
  • Lee WH, Morton RA, Epstein JI, Brooks JD, Campbell PA, Bova GS. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci U S A 1994; 91: 11733–7
  • Lee WH, Isaacs WB, Bova GS, Nelson WG. CG island methylation changes near the GSTP1 gene in prostatic carcinoma cells detected using the polymerase chain reaction: a new prostate cancer biomarker. Cancer Epidemiol Bio-markers Prev 1997; 6: 443–50
  • Brooks JD, Weinstein M, Lin X, Sun Y, Pin SS, Bova GS. CG island methylation changes near the GSTP1 gene in prostatic intraepithelial neoplasia. Cancer Epidemiol Bio-markers Prev 1998; 7: 531–6
  • Mannervik B, Alin P, Guthenberg C, Jensson H, Tahir MK, Warholm M. Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc Natl Acad Sci U S A 1985; 82: 7202–6
  • Schreiber-Agus N, Meng Y, Hoang T, Hou H, Jr, Chen K, Greenberg R. Role of Mxi1 in ageing organ systems and the regulation of normal and neoplastic growth. Nature 1998; 393: 483–7
  • Eagle LR, Yin X, Brothman AR, Williams BJ, Atkin NB, Prochownik EV. Mutation of the MXI1 gene in prostate cancer. Nat Genet 1995; 9: 249–55
  • Gray IC, Phillips SM, Lee SJ, Neoptolemos JP, Weissenbach J, Spurr NK. Loss of the chromosomal region 10q23–25 in prostate cancer. Cancer Res 1995; 55: 4800–3
  • Kawamata N, Park D, Wilczynski S, Yokota J, Koeffler HP. Point mutations of the Mxil gene are rare in prostate cancers. Prostate 1996; 29: 191–3
  • Prochownik EV, Eagle LR, Grove L, Deubler D, Zhu XL, Stephenson RA. Commonly occurring loss and mutation of the MXI1 gene in prostate cancer. Genes Chrom Cancer 1998; 22: 295–304
  • Wu X, Senechal K, Neshat MS, Whang YE, Sawyers CL. The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci U S A 1998; 95: 15587–91
  • Di Cristofano A, Pandolfi PP. The multiple roles of PTEN in tumor suppression. Cell 2000; 100: 387–90
  • Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 1997; 15: 356–62
  • Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997; 275: 1943–7
  • Liaw D, Marsh DJ, Li J, Dahia PL, Wang SI, Zheng Z. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 1997; 16: 64–7
  • Marsh DJ, Dahia PL, Zheng Z, Liaw D, Parsons R, Gorlin RJ. Germline mutations in PTEN are present in Bannayan-Zonana syndrome. Nat Genet 1997; 16: 333–4
  • Cairns P, Okami K, Halachmi S, Halachmi N, Esteller M, Herman JG. Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res 1997; 57: 4997–5000
  • Dong JT, Sipe TW, Hyytinen ER, Li CL, Heise C, McClintock DE. PTEN/MMAC1 is infrequently mutated in pT2 and pT3 carcinomas of the prostate. Oncogene 1998; 17: 1979–82
  • Feilotter HE, Nagai MA, Boag AH, Eng C, Mulligan LM. Analysis of PTEN and the 10q23 region in primary prostate carcinomas. Oncogene 1998; 16: 1743–8
  • Pesche S, Latil A, Muzeau F, Cussenot O, Fournier G, Longy M. PTEN/MMAC1/TEP1 involvement in primary prostate cancers. Oncogene 1998; 16: 2879–83
  • Suzuki H, Freije D, Nusskern DR, Okami K, Cairns P, Sidransky D. Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate cancer tissues. Cancer Res 1998; 58: 204–9
  • Wang SI, Parsons R, Ittmann M. Homozygous deletion of the PTEN tumor suppressor gene in a subset of prostate adenocarcinomas. Clin Cancer Res 1998; 4: 811–5
  • Vlietstra RJ, van Alewijk DC, Hermans KG, van Steenbrugge GJ, Trapman J. Frequent inactivation of PTEN in prostate cancer cell lines and xenografts. Cancer Res 1998; 58: 2720–3
  • Elo JP, Härkönen P, Kyllönen AP, Lukkarinen O, Vihko P. Three independently deleted regions at chromosome arm 16q in human prostate cancer: allelic loss at 16q24.1-q24.2 is associated with aggressive behaviour of the disease, recurrent growth, poor differentiation of the tumour and poor prognosis for the patient. Br J Cancer 1999; 79: 156–60
  • Elo JP, Harkonen P, Kyllönen AP, Lukkarinen O, Poutanen M, Vihko R. Loss of heterozygosity at 16q24.1-q24.2 is significantly associated with metastatic and aggressive behavior of prostate cancer. Cancer Res 1997; 57: 3356–9
  • Suzuki H, Komiya A, Emi M, Kuramochi H, Shiraishi T, Yatani R. Three distinct commonly deleted regions of chromosome arm 16q in human primary and metastatic prostate cancers. Genes Chromosomes Cancer 1996; 17: 225–33
  • Latil A, Cussenot O, Fournier G, Driouch K, Lidereau R. Loss of heterozygosity at chromosome 16q in prostate adenocarcinoma: identification of three independent regions. Cancer Res 1997; 57: 1058–62
  • Umbas R, Isaacs WB, Bringuier PP, Schaafsma HE, Karthaus HF, Oosterhof GO. Decreased E-cadherin expression is associated with poor prognosis in patients with prostate cancer. Cancer Res 1994; 54: 3929–33
  • Umbas R, Schalken JA, Aalders TW, Carter BS, Karthaus HF, Schaafsma HE. Expression of the cellular adhesion molecule E-cadherin is reduced or absent in high-grade prostate cancer. Cancer Res 1992; 52: 5104–9
  • Otto T, Rembrink K, Goepel M, Meyer-Schwickerath M, Rubben H. E-cadherin: a marker for differentiation and invasiveness in prostatic carcinoma. Urol Res 1993; 21: 359–62
  • Richmond PJ, Karayiannakis AJ, Nagafuchi A, Kaisary AV, Pignatelli M. Aberrant E-cadherin and alpha-catenin expression in prostate cancer: correlation with patient survival. Cancer Res 1997; 57: 3189–93
  • Umbas R, Isaacs WB, Bringuier PP, Xue Y, Debruyne FM, Schalken JA. Relation between aberrant alpha-catenin expression and loss of E-cadherin function in prostate cancer. Int J Cancer 1997; 74: 374–7
  • Morton RA, Ewing CM, Nagafuchi A, Tsukita S, Isaacs WB. Reduction of E-cadherin levels and deletion of the alpha-catenin gene in human prostate cancer cells. Cancer Res 1993; 53: 3585–90
  • Voeller HJ, Truica CI, Gelmann EP. Beta-catenin mutations in human prostate cancer. Cancer Res 1998; 58: 2520–3
  • Chesire DR, Ewing CM, Sauvageot J, Bova GS, Isaacs WB. Detection and analysis of beta-catenin mutations in prostate cancer. Prostate 2000; 45: 323–34
  • Peifer M. Beta-catenin as oncogene: the smoking gun. Science 1997; 275: 1752–3
  • Truica CI, Byers S, Gelmann EP. Beta-catenin affects androgen receptor transcriptional activity and ligand specificity. Cancer Res 2000; 60: 4709–13
  • Harris CC, Hollstein M. Clinical implications of the p53 tumor-suppressor gene. N Engl J Med 1993; 329: 1318–27
  • Bookstein R, MacGrogan D, Hilsenbeck SG, Sharkey F, Allred D C. p53 is mutated in a subset of advanced-stage prostate cancers. Cancer Res 1993; 53: 3369–73
  • Navone NM, Labate ME, Troncoso P, Pisters LL, Conti CJ, von Eschenbach AC. p53 mutations in prostate cancer bone metastases suggest that selected p53 mutants in the primary site define foci with metastatic potential. J Urol 1999; 161: 304–8
  • Navone NM, Troncoso P, Pisters LL, Goodrow TL, Palmer JL, Nichols WW. p53 protein accumulation and gene mutation in the progression of human prostate carcinoma. J Natl Cancer Inst 1993; 85: 1657–69
  • Visakorpi T, Kallioniemi O-P, Heikkinen A, Koivula T, Isola J. A small subgroup of aggressive, highly proliferative prostatic carcinomas defined by p53 accumulation. J Natl Cancer Inst 1992; 84: 883–7
  • Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244: 707–12
  • Pegram MD, Slamon DJ. Combination therapy with trastuzumab (Herceptin) and cisplatin for chemoresistant metastatic breast cancer: evidence for receptor-enhanced chemosensitivity. Semin Oncol 1999; 26: 89–95, (Suppl 12)
  • Visakorpi T, Kallioniemi O-P, Koivula T, Harvey J, Isola J. Expression of epidermal growth factor receptor and ERBB2 (HER2/neu) oncoprotein in prostatic carcinomas. Modern Pathol 1992; 5: 643–8
  • Signoretti S, Montironi R, Manola J, Altimari A, Tam C, Bubley G. Her-2-neu expression and progression toward androgen independence in human prostate cancer. J Natl Cancer Inst 2000; 92: 1918–25
  • Agus DB, Scher HI, Higgins B, Fox WD, Heller G, Fazzari M. Response of prostate cancer to anti-Her-2/neu antibody in androgen-dependent and -independent human xenograft models. Cancer Res 1999; 59: 4761–4
  • Craft N, Shostak Y, Carey M, Sawyers CL. A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med 1999; 5: 280–5
  • Yeh S, Lin HK, Kang HY, Thin TH, Lin MF, Chang C. From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc Natl Acad Sci USA 1999; 96: 5458–63
  • Scher HI. HER2 in prostate cancer-a viable target or innocent bystander. J Natl Cancer Inst 2000; 92: 1866–8
  • Koivisto P, Kolmer M, Visakorpi T, Kallioniemi OP. Androgen receptor gene and hormonal therapy failure of prostate cancer. Am J Pathol 1998; 152: 1–9
  • Jänne OA, Palvimo JJ, Kallio P, Mehto M. Androgen receptor and mechanism of androgen action. Ann Med 1993; 25: 83–9
  • Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinanen R, Palmberg C. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 1995; 9: 401–6
  • Koivisto P, Kononen J, Palmberg C, Tammela T, Hyytinen E, Isola J. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res 1997; 57: 314–9
  • Miyoshi Y, Uemura H, Fujinami K, Mikata K, Harada M, Kitamura H. Fluorescence in situ hybridization evaluation of c-myc and androgen receptor gene amplification and chromosomal anomalies in prostate cancer in Japanese patients. Prostate 2000; 43: 225–32
  • Kinoshita H, Shi Y, Sandefur C, Meisner LF, Chang C, Choon A. Methylation of the androgen receptor minimal promoter silences transcription in human prostate cancer. Cancer Res 2000; 60: 3623–30
  • Palmberg C, Koivisto P, Kakkola L, Tammela TLJ, Kallioniemi OP, Visakorpi T. Androgen receptor gene amplification at the time of primary progression predicts response to combined androgen blockade as a second-line therapy in advanced prostate cancer. J Urol 2000; 164: 1992–5
  • Culig Z, Hobisch A, Cronauer MV, Radmayr C, Trapman J, Hittmair A. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res 1994; 54: 5474–8
  • Zhao XY, Malloy PJ, Krishnan AV, Swami S, Navone NM, Peehl DM. Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat Med 2000; 6: 703–6
  • Veldscholte J, Ris-Stalpers C, Kuiper GG, Jenster G, Berrevoets C, Claassen E. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biocbem Biophys Res Commun 1990; 173: 534–40
  • Wallen MJ, Linja M, Kaartinen K, Schleutker J, Visakorpi T. Androgen receptor gene mutations in hormone-refractory prostate cancer. J Pathol 1999; 189: 559–63
  • Taplin ME, Bubley GJ, Shuster TD, Frantz ME, Spooner AE, Ogata GK. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med 1995; 332: 1393–8
  • Taplin ME, Bubley GJ, Ko YJ, Small EJ, Upton M, Rajeshkumar B. Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res 1999; 59: 2511–5
  • Hsiao PW, Chang C. Isolation and characterization of ARA160 as the first androgen receptor N-terminal-associated coactivator in human prostate cells. J Biol Chem 1999; 274: 22373–9
  • Rang HY, Yeh S, Fujimoto N, Chang C. Cloning and characterization of human prostate coactivator ARA54, a novel protein that associates with the androgen receptor. J Biol Chem 1999; 274: 8570–6
  • Fujimoto N, Yeh S, Rang HY, Inui S, Chang HC, Mizokami A. Cloning and characterization of androgen receptor coactivator, ARA55, in human prostate. J Biol Chem 1999; 274: 8316–21
  • Yeh S, Chang C. Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc Natl Acad Sci U S A 1996; 93: 5517–21
  • Moilanen AM, Karvonen U, Poukka H, Yan W, Toppari J, Janne OA. A testis-specific androgen receptor coregulator that belongs to a novel family of nuclear proteins. J Biol Chem 1999; 274: 3700–4
  • Moilanen AM, Karvonen U, Poukka H, Jänne OA, Palvimo JJ. Activation of androgen receptor function by a novel nuclear protein kinase. Mol Biol Cell 1998; 9: 2527–43
  • Moilanen AM, Poukka H, Karvonen U, Hakli M, Janne OA, Palvimo JJ. Identification of a novel RING finger protein as a coregulator in steroid receptor-mediated gene transcription. Mol Cell Biol 1998; 18: 5128–39
  • Miyamoto H, Yeh S, Wilding G, Chang C. Promotion of agonist activity of antiandrogens by the androgen receptor coactivator, ARA70, in human prostate cancer DU145 cells. Proc Natl Acad Sci U S A 1998; 95: 7379–84
  • Dong JT, Lamb PW, Rinker-Schaeffer CW, Vukanovic J, Ichikawa T, Isaacs JT. KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science 1995; 268: 884–6
  • Dong JT, Suzuki H, Pin SS, Bova GS, Schalken JA, Isaacs WB. Down-regulation of the KAI1 metastasis suppressor gene during the progression of human prostatic cancer infrequently involves gene mutation or allelic loss. Cancer Res 1996; 56: 4387–90
  • Huggins C, Hodges CV. The effect of castration, of estrogens and androgen injection on serum phosphatase in metastatic carcinoma of prostate. Cancer Res 1941; 1: 293–7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.