40
Views
21
CrossRef citations to date
0
Altmetric
Original Article

The Role of Arginine Vasopressin in Alcohol Tolerance

, , , , , , & show all
Pages 269-274 | Published online: 08 Jul 2009

References

  • Tabakoff B, Melchior C L., Hoffman P L. Commentary on ethanol tolerance. Alcoholism: Clin Exp Res 1982; 6: 252–9
  • Tabakoff B, Hoffman P L. Ethanol tolerance and dependence. Genetics and alcoholism. Prog Clin Biol Res, H W. Goedde, D P. Agarwal. Alan R Liss, Inc., New York 1987; Vol 241: 253–70
  • Tabakoff B, Ritzmann R F. The effects of 6-hydroxydopa-mine on tolerance to and dependence on ethanol. J Pharmacol Exp Ther 1977; 203: 319–32
  • Khanna J M., Kalant H, Lê A D., LeBlanc A E. Role of serotonergic and adrenergic systems in alcohol tolerance. Prog Neuropsychopharmacol Biol Psychiatry 1981; 5: 459–65
  • Melchior C L., Tabakoff B. Modification of environmentally-cued tolerance to ethanol in mice. J Pharmacol Exp Ther 1981; 219: 175–80
  • Tabakoff B, Hoffman P L. Biochemical pharmacology of alcohol. Psychopharmacology - the third generation of progress, H Y. Meltzer. Raven Press, New York 1987; 1521–6
  • Hoffman P L., Ritzmann R F., Walter R, Tabakoff B. Arginine vasopressin maintains ethanol tolerance. Nature 1978; 276: 614–6
  • Lê A D., Kalant H, Khanna J M. Interaction between des-9-glycinamide-[8-Arg]vasopressin and serotonin on ethanol tolerance. Eur J Pharmacol 1982; 80: 337–45
  • Speisky M B., Kalant H. Site of interaction of serotonin and desglycinamide-arginine vasopressin in maintenance of ethanol tolerance. Brain Res 1985; 326: 281–90
  • Hoffman P L., Melchior C L., Tabakoff B. Vasopressin maintenance of ethanol tolerance requires intact brain noradrenergic systems. Life Sci 1983; 32: 1065–71
  • Kovács G L., Bohus B, Versteeg D HG, de Kloet E R., de Wied D. Effect of oxytocin and vasopressin on memory consolidation: sites of action and catecholaminergic correlates after local microinjection into limbic-midbrain structures. Brain Res 1979; 175: 303–14
  • Jard S. Vasopressin isoreceptors in mammals: relation to cyclic AMP-dependent and cyclic AMP-independent trans-duction mechanisms. Curr Top Mernbr Transp 1983; 18: 255–85
  • Tribollet E, Barberis C, Jard S, Dubois-Dauphin M, Dreifuss J J. Localization and pharmacological characterization of high affinity binding sites for vasopressin and oxytocin in the rat brain by light microscopic autoradiog-raphy. Brain Res 1988; 442: 105–18
  • Szabó G, Tabakoff B, Hoffman P L. Receptors with V, characteristics mediate the maintenance of ethanol tolerance by vasopressin. J Pharmacol Exp Ther 1988; 247: 536–41
  • Ishizawa H, Tabakoff B, Mefford I N., Hoffman P L. Reduction of arginine vasopressin binding sites in mouse lateral septum by treatment with 6-hydroxydopamine. Brain Res 1990; 507: 189–94
  • Tanaka M, de Kloet E R., de Wied D, Versteeg D HG. Arginine8-vasopressin affects catecholamine metabolism in specific brain nuclei. Life Sci 1977; 20: 1799–808
  • Lindvall O, Sténevi U. Dopamine and noradrenaline neurons projecting to the septal area in the rat. Cell Tissue Res 1978; 190: 383–407
  • Raggenbass M, Dubois-Dauphin M, Tribollet E, Dreifuss J J. Direct excitatory action of vasopressin in the lateral septum of the rat brain. Brain Res 1988; 459: 60–9
  • Buijs R M., Swaab D F. Immuno-electron microscopical demonstration of vasopressin and oxytocin synapses in the limbic system of the rat. Cell Tissue Res 1979; 204: 355–65
  • Stephens L R., Logan S D. Arginine vasopressin stimulates inositol phospholipid metabolism in rat hippocampus. J Neurochem 1985; 46: 649–51
  • Shewey L M., Dorsa D M. V-type vasopressin receptors in rat brain septum: binding characteristics and effects on inositol phospholipid metabolism. J Neurosci 1988; 8: 1671–7
  • Curran T. The fos, oncogene. The oncogene handbook, E P. Reddy, A M. Skalka, T Cur-ran. Elsevier Science Publishers B.V. (Biomedical Division), Amsterdam 1988; 307–25
  • Morgan J I., Curran T. Role of ion flux in the control of c-fos, expression. Nature 1986; 322: 552–5
  • Halazonetis T D., Georgopoulos K, Greenberg M E., Leder P. c-Jun, dimerizes with itself and c-fos, forming complexes of different DNA binding affinities. Cell 1988; 55: 917–24
  • Greenberg M E., Ziff E B., Greene L A. Stimulation of neu-ronal acetylcholine receptors induces rapid gene transcription. Science 1986; 234: 80–3
  • Kasting N W., Veale W L., Cooper K E. Convulsive and hypothermic effects of vasopressin in the brain of rats. Can J Physiol Pharmacol 1980; 58: 316–9
  • Dragunow M, Robertson H A. Kindling stimulation induces c-fos, protein(s) in granule cells of the rat dentate gyrus. Nature 1987; 329: 441–2
  • Morgan J I., Cohen D R., Hempstead J L., Curran T J. Mapping patterns of c-fos expression in the central nervous system after seizure. Science 1987; 237: 192–7
  • Rathna Giri P, Dave J R., Tabakoff B, Hoffman P L. Arginine vasopressin induces the expression of c-fos, in the mouse septum and hippocampus. Mol Brain Res 1990; 7: 131–7
  • Hoffman P L., Ritzmann R F., Tabakoff B. The influence of arginine vasopressin and oxytocin on ethanol dependence and tolerance. Currents in alcoholism, M Galanter. Grune and Stratton, New York 1979; 5: 5–17
  • Szekely A M., Barbaccia M L., Alho H, Costa E. In primary cultures of cerebellar granule cells the activation of N-methyl-D-aspartate-sensitive glutamate receptors induces c-fos, mRNA expression. Mol Pharmacol 1989; 35: 401–8
  • Schmale H, Ivell R, Breindl M, Darmer D, Richter D. The mutant vasopressin gene from diabetes insipidus (Bratt-leboro) rats is transcribed but the message is not efficiently translated. EMBO J 1984; 3: 3289–93
  • Grant K, Werner R, Hoffman P L., Tabakoff B. Chronic tolerance to ethanol in the N/NIH rat. Alcoholism: Clin Exp Res 1989; 13: 402–6
  • Tabakoff B, Culp S G. Studies on tolerance development in inbred and heterogeneous stock National Institutes of Health rats. Alcoholism: Clin Exp Res 1984; 8: 495–9
  • Pittman Q J., Rogers J, Bloom F E. Arginine vasopressin deficient Brattleboro rats fail to develop tolerance to the hypothermic effects of ethanol. Regul Pept 1982; 4: 33–41
  • Beard J D., Sargent W Q. Water and electrolyte metabolism following ethanol intake and during acute withdrawal from ethanol. Biochemistry and pharmacology of ethanol, E Majchrowicz, E P. Noble. Plenum Press, New York 1979; Vol 2: 3–16
  • Eisenhofer G, Lambie D G., Whiteside E A., Johnson R H. Vasopressin concentrations during alcohol withdrawal. Br J Addict 1985; 80: 195–9
  • Ishizawa H, Dave J R., Liu L, Tabakoff B, Hoffman P L. Hypothalamic vasopressin mRNA levels in mice are decreased after chronic ethanol ingestion. Eur J Pharmacol 1990, (in press)
  • Ritzmann R F., Tabakoff B. Body temperature in mice: a quantitative measure of alcohol tolerance and physical dependence. J Pharmacol Exp Ther 1976; 199: 158–70
  • Karanian J, Yergey J, Lister R, D'Souza N, Linnoila M, Salem N. Characterization of an automated apparatus for precise control of inhalation chamber ethanol vapor and blood ethanol concentrations. Alcoholism: Clin Exp Res 1986; 10: 443–7
  • Buijs R M. Intra-and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res 1978; 192: 423–5
  • Caffé A R., Van Leeuwen F W., Luiten P GM. Vasopressin cells in the medial amygdala of the rat project to the lateral septum and ventral hippocampus. J Comp Neurol 1987; 261: 237–52
  • Castel M, Morris J F. The neurophysin-containing inner-vation of the forebrain of the mouse. Neuroscience 1988; 24: 937–66
  • Coleman R J., Reppert S M. CSF vasopressin rhythm is effectively insulated from osmotic regulations of plasma vasopressin. Am J Physiol 1985; 248: E346–52
  • De Vries G J., Buijs R M., Van Leeuwen F W., Caffé, Swaab D F. The vasopressinergic innervation of the brain in normal and castrated rats. J Comp Neurol 1985; 233: 236–54
  • Miller M A., Vician L, Clifton D K., Dorsa D M. Sex differences in vasopressin neurons in the bed nucleus of the stria terminalis by in situ, hybridization. Peptides 1989; 10: 615–9
  • Albers H E., Rawls S. Coordination of hamster lordosis and flank marking behavior: role of arginine vasopressin within the medial preoptic-anterior hypothalamus. Brain Res Bull 1989; 23: 105–9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.