36
Views
72
CrossRef citations to date
0
Altmetric
Original Article

Macrophages and Oxidized Low Density Lipoproteins in the Pathogenesis of Atherosclerosis

Pages 561-567 | Published online: 08 Jul 2009

References

  • Steinberg D. The cholesterol controversy is over Why did it take so long?. Circulation 1989; 80: 1070–8
  • Brown M S, Goldstein J L. Lipoprotein metabolism in the macrophage: Implications for cholesterol deposition in atherosclerosis. Ann Rev Biochem 1983; 52: 223–61
  • Steinberg D, Witztum J L. Lipoproteins and Atherogenesis. Current Concepts. JAMA 1990; 264: 3047–52
  • Steinberg D, Parthasarathy S, Carew T E, Khoo J C, Witztum J L. Beyond cholesterol: Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 1989; 320: 915–24
  • Carew T E, Schwenke D C, Steinberg D. Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: Evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks slowing the progression of atherosclerosis in the WHHL rabbit. Proc Natl Acad Sci USA 1987; 84: 7725–9
  • Kita T, Nagano Y, Yokode M, et al. Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia. Proc Natl Acad Sci USA 1987; 84: 5928–31
  • Smith E B. The relationship between plasma and tissue lipids in human atherosclerosis. Adv Lipid Res 1974; 12: 1–49
  • Ylä-Herttuala S, Nikkari T, Hirvonen J, et al. Biochemical composition of coronary arteries in Finnish children. Arteriosclerosis 1986; 6: 230–6
  • Hoff H F, Heideman C L, Gotto A M, Jr, Gaubatz J W. Apolipoprotein B retention in the grossly normal and atherosclerotic human aorta. Circ Res 1977; 41: 684–90
  • Ylä-Herttuala S, Solakivi T, Hirvonen J, et al. Glycosaminoglycans and apolipoproteins B and A-l in human aortas. Chemical and immunological analysis of lesion-free aortas from children and adults. Arteriosclerosis 1987; 7: 333–40
  • Ylä-Herttuala S. Biochemistry of the arterial wall in developing atherosclerosis. Ann NY Acad Sci 1991; 623: 40–59
  • Glomset J A, Norum K R. The metabolic role of lecithin-cholesterol acyltransferase: perspectives from pathology. Adv Lipid Res 1973; 11: 1–65
  • Parthasarathy S, Barnett J, Fong L G. High-density lipoprotein inhibits the oxidative modification of low-density lipoprotein. Biochim Biophys Acta 1990; 1044: 275–83
  • Schwenke D C, Carew T E. Initiation of atherosclerotic lesions in cholesterol-fed rabits. II. Selective retention of LDL vs. selective increases in LDL permeability in susceptible site of arteries. Arteriosclerosis 1989; 9: 908–18
  • Camejo G, Acquatella H, Lalaguna F. The interaction of low density lipoproteins with arterial proteoglycans. Atherosclerosis 1980; 36: 55–56
  • Berenson G S, Radhakrishnamurthy B, Srinivasan S R, Vijayagopal P, Dalferes E R, Jr, Sharma C. Recent advances in molecular pathology. Carbohydrate-protein macromolecules and arterial wall integrity - a role in atherogenesis. Exp Mol Pathol 1984; 41: 267–87
  • Ross R. The pathogenesis of atherosclerosis - an update. N Engl J Med 1986; 314: 488–500
  • Henriksen T, Mahoney E M, Steinberg D. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: Recognition by the receptor for acetylated low density lipoproteins. Proc Natl Acad Sci USA 1981; 78: 6499–503
  • Steinbrecher U P, Parthasarathy S, Leake D S, Witztum J L, Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci USA 1984; 83: 3883–7
  • Fogelman A M, Schechter I, Seager J, Hokom M, Child J S, Edwards P A. Malondialdehyde alteration of low density lipoprotein leads to cholesteryl ester accumulation in human monocyte-macrophages. Proc Natl Acad Sci USA 1980; 77: 2214–8
  • Jürgens G J, Lang J, Esterbauer H. Modification of human low-density lipoprotein by the lipid peroxidation product 4-hydroxynonenal. Biochim Biophys Acta 1986; 875: 103–14
  • Polacek D, Byrne R E, Fless G M, Scanu A M. In vitro proteolysis of human plasma low density lipoproteins by an elastase released from human polymorphonuclear cells. J Biol Chem 1986; 261: 2057–63
  • Coetzee G A, Gevers W, van der Westhuyzen D R. Plasmin-treated low density lipoproteins: polypeptide analyses and metabolism by cultured smooth muscle cells. Artery 1980; 7: 1–15
  • Cardin A D, Witt K R, Chao J, Margolius H S, Donaldson V H, Jackson R L. Degradation of apolipoprotein B-100 of human plasma lowdensity lipoproteins by tissue and plasma kallikreins. J Biol Chem 1984; 259: 8522–8
  • Khoo J C, Miller E, McLoughlin P, Steinberg D. Enhanced macrophage uptake of low density lipoprotein after self-aggregation. Arteriosclerosis 1988; 8: 348–58
  • Suits A G, Chait A, Aviram M, Heinecke J W. Phagocytosis of aggregated lipoprotein by macrophages: Lowdensity lipoprotein receptor-dependent foam-cell formation. Proc Natl Acad Sci USA 1989; 86: 2713–7
  • Vijayagopal P, Srinivasan S R, Jones K M, Radhakrishnamurthy B, Berenson G S. Complexes of low-density lipoproteins and arterial proteoglycan aggregates promote cholesteryl ester accumulation in mouse macrophages. Biochim Biophys Acta 1985; 837: 252–60
  • Ylä-Herttuala S, Jaakkola O, Solakivi T, Kuivaniemi H, Nikkari T. The effect of proteoglycans, collagen and lysyl oxidase on the metabolism of low density lipoprotein by macrophages. Atherosclerosis 1986; 62: 73–80
  • Hurt E, Camejo G. Effect of arterial proteoglycans on the interaction of LDL with human monocyte-derived macrophages. Atherosclerosis 1987; 67: 115–26
  • Falcone D J, Mated N, Shio H, Minick C R, Fowler S D. Lipoprotein-heparin-fibronectin-denatured collagen complexes enhance cholesteryl ester accumulation in macrophages. J Cell Biol 1984; 99: 1266–71
  • Klimow A N, Denisenko A D, Vinogradov A G, et al. Accumulation of cholesteryl esters in macrophages incubated with human lipoprotein-antibody autoimmune complex. Atherosclerosis 1988; 74: 41–6
  • Kokkonen J O, Kovanen P T. Stimulation of mast cells leads to cholesterol accumulation in macrophages in vitro by a mast cell granule-mediated uptake of low density lipoprotein. Proc Natl Acad Sci USA 1987; 84: 2287–91
  • Palinski W, Ylä-Herttuala S, Rosenfeld M E, et al. Antisera and monoclonal antibodies specific for epitopes generated during the oxidative modification of low density lipoproteins. Arteriosclerosis 1990; 10: 325–35
  • Haberland M E, Fong D, Cheng L. Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits. Science 1988; 241: 215–8
  • Palinski W, Rosenfeld M E, Ylä-Herttuala S, et al. Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci USA 1989; 86: 1372–6
  • Boyd H C, Gown A M, Wolfbauer G, Chait A. Direct evidence for a protein recognized by a monoclonal antibody against oxidatively modified LDL in atherosclerotic lesions from a Watanabe heritable hyperlipidemic rabbit. Am J Pathol 1989; 135: 815–25
  • Ylä-Herttuala S, Rosenfeld M E, Parthasarathy S, et al. Colocalization of 15-lipoxygenase mRNA and protein with oxidized low density lipoprotein in macrophage-rich areas of atherosclerotic lesions. Proc Natl Acad Sci USA 1990; 87: 6959–63
  • Rosenfeld M E, Palinski W, Ylä-Herttuala S, Butler S, Witztum J L. Distribution of oxidized proteins and apolipoprotein B in atherosclerotic lesions of varying severity from WHHL rabbits: Immunocytochemical analysis using antibodies generated against modified and native LDL. Arteriosclerosis 1990; 10: 336–49
  • Ylä-Herttuala S, Rosenfeld M E, Parthasarathy S, et al. Gene expression in macrophage-rich human atherosclerotic lesions. 15-Lipoxygenase and acetyl low density lipoprotein receptor messenger RNA colocalize with oxidation specific lipid-protein adducts. J Clin Invest 1991; 87: 1146–52
  • Ylä-Herttuala S, Palinski W, Rosenfeld M E, Steinberg D, Witztum J L. Isolation and characterization of lipoproteins from normal and atherosclerotic arteries. Eur Herat J 1990; 11: 88–99
  • Ylä-Herttuala S, Jaakkola O, Ehnholm C, et al. Characterization of two lipoproteins containing apolipoproteins B and E from lesion-free human aortic intima. J Lipid Res 1988; 29: 563–72
  • Ylä-Herttuala S, Palinski W, Rosenfeld M E, et al. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest 1989; 84: 1086–97
  • Sparrow C P, Parthasarathy S, Steinberg D. Enzymatic modification of low density lipoprotein by purified lipoxygenase plus phospholipase A2 mimics cell-mediated oxidative modification. J Lipid Res 1988; 29: 745–53
  • Parthasarathy S, Wieland E, Steinberg D. A role for endothelial cell lipoxygenase in the oxidative modification of LDL. Proc Natl Acad Sci USA 1989; 86: 1046–50
  • Rankin S M, Parthasarathy S, Steinberg D. Evidence of a dominant role of lipoxygenase(s) in the oxidation of LDL by mouse peritoneal macrophages. J Lipid Res 1991; 32: 449–56
  • Simon T C, Makheja A N, Bailey J M. Formation of 15-hydroxyeicosatetraenoic acid (15-HETE) as the predominant eicosanoid in aortas from Watanabe Heritable Hyperlipidemic and cholesterol-fed rabbits. Atherosclerosis 1989; 75: 31–8
  • Ylä-Herttuala S, Butler S, Picard S, Palinski W, Steinberg D, Witztum J L. Rabbit and human atherosclerotic lesions contain IgG that recognizes MDA-LDL and copper-oxidized LDL. Arteriosclerosis 1991; 11: 1426
  • Quinn M T, Parthasarathy S, Fong L G, Steinberg D. Oxidatively modified low density lipoproteins: A potential role in recruitment and retention of monocyte/macrophages during atherogensis. Proc Natl Acad Sci USA 1987; 84: 2995–9
  • Hessler J R, Robetson A L, Jr, Chisolm G M. LDL-induced cytotoxicity and its inhibition by HDL in human vascular smooth muscle and endothelial cells in culture. Atherosclerosis 1979; 32: 213–29
  • Pryor W A. The role of free radical reactions in biological systems. Free radicals in biology, W A Pryor. Academic Press, New York 1976; Vol. 1: 1–49
  • Kodama T, Freeman M, Rohrer L, Zabrecky J, Matsudaira P, Krieger M. Type I macrophage scavenger receptor contains a-helical and collagen-like coiled coils. Nature 1990; 343: 531–5
  • Yoshimura T, Yuhki N, Moore S K, Appella E, Lerman M I, Leonard E J. Human monocyte chemoattractant protein-1 (MCP-1): Full-length cDNA cloning, expression in mitogen-stimulated blood mononuclear leukocytes, and sequence similarity to mouse competence gene. JE. FEBS Letters 1989; 244: 487–93
  • Rajavashisth T, Eng R, Shadduck R K, et al. Cloning and tissue-specific expression of mouse macrophage colony-stimulating factor mRNA. Proc Natl Acad Sci USA 1987; 84: 1157–61
  • Bevilacqua M P, Stengelin S, Gimbrone M A, Jr, Seed B. Endothelial leukocyte adhesion molecule 1: An inducible receptor for neurophils related to complement regulatory proteins and lectins. Science 1989; 243: 1160–5
  • Osborn L, Hession C, Tizard R, et al. Direct cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell 1989; 59: 1203–10
  • Cubylsky M I, Gimbrone M A. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 1991; 251: 788–91
  • Ross R, Masuda J, Raines E W, et al. Localization of PDGF-B protein in macrophages in all phases of atherogenesis. Science 1990; 248: 1009–12
  • Hansson G, Holm J, Jonasson L. Detection of activated T lymphocytes in the human atherosclerotic plaque. Am J Pathol 1989; 135: 169–75
  • Barath P, Fishbein M C, Cao J, Berenson J, Helfant R H, Forrester J S. Tumor necrosis factor gene expression in human vascular intimal smooth muscle cells detected by in situ hybridization. Am J Pathol 1990; 137: 503–9
  • Ylä-Herttuala S, Lipton B A, Rosenfeld M E, Goldberg I, Steinberg D, Witztum J L. Macrophages and smooth muscle cells express lipoprotein lipase in human and rabbit atherosclerotic lesions. Proc Natl Acad Sci USA 1991, in press
  • Mizel T. The interleukins. FASEB J 1989; 3: 2379–88
  • Ylä-Herttuala S, Lipton B A, Rosenfeld M E, et al. Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions. Proc Natl Acad Sci USA 1991; 88: 5252–6
  • Cushing S D, Berliner J A, Valente A J, et al. Minimally modified lowdensity lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci USA 1990; 87: 5134–8
  • Rajavashisth T B, Andalibi A, Territo M C, et al. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified lowdensity lipoproteins. Nature 1990; 344: 254–7
  • Liao F, Berliner J A, Mehrabian M, et al. Minimally modified low density lipoprotein is biologically active in vivo in mice. J Clin Invest 1991; 87: 2253–7
  • Wilcox J N, Smith K, Williams L T, Schwartz S M, Gordon D. Platelet-derived growth factor mRNA detection in human atherosclerotic plaques by in situ hybridization. J Clin Invest 1988; 82: 1134–43
  • Zilversmit D B. A proposal linking atherogenesis to the interaction of endothelial lipoprotein lipase with triglyseride-rich lipoproteins. Circ Res 1973; 33: 633–8
  • Moyer C F, Sajuthi D, Tulli H, Williams K. Synthesis of IL-1 alpha and IL-1 beta by arterial cells in atherosclerosis. Am J Pathol 1991; 138: 951–60
  • Clinton S K, Fleet J C, Loppnow H, et al. lnterleukin-1 gene expression in rabbit vascular tissue in vivo. Am J Pathol 1991; 138: 1005–154
  • Kugiyama K, Kerns S A, Morisett J D, Roberts R, Henry P D. Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified low density lipoproteins. Nature 1990; 344: 160–2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.