446
Views
16
CrossRef citations to date
0
Altmetric
Original Article

Regulatory Mutations and Human Genetic Disease

Pages 427-437 | Published online: 04 Aug 2009

References

  • Myers R M., Tilly K, Maniatis T. Fine structure genetic analysis of a β-globin promoter. Science 1986; 232: 613–8
  • Dierks P, Van Ooyen A, Cochran M D., Dobkin C, Reiser J, Weissman C. Three regions upstream from the cap site are required for efficient and accurate transcription of the rabbit beta-globin gene in mouse 3T6 cells. Cell 1983; 32: 695–701
  • Collins F S., Weissman S M. The molecular genetics of human hemoglobin. Prog Nucl Acid Res Mot Biol 1984; 31: 315–53
  • Mantovani R, Malgaretti N, Nicolis S, et al. An erythroid specific nuclear factor binding to the proximal CACCC box of the β-globin gene promoter. Nucleic Acids Res 1988; 16: 4299–313
  • Sawadago M, Roeder R G. Interaction of a gene-specific transcription factor with the adenovirus major late promoter upstream of the TATA box region. Cell 1985; 43: 165–75
  • Faustino P, Osório-Almeida L, Barbot J, et al. Novel promoter and splice junction defects add to the genetic, clinical or geographic heterogeneity of β-thalassaemia in the Portuguese population. Hum Genet 1992; 89: 573–6
  • Orkin S H., Antonarakis S E., Kazazian H H. Base substitution at position -88 in a β-thalassemic globin gene: further evidence for the role of distal promoter element ACACCC. J Biol Chem 1984; 259: 8679–81
  • Baklouti F, Ouazana R, Gonnet C, Lapillonne A, Delaunay J, Godet J. β+ -thalassaemia in cis of a sickle gene: occurrence of a promoter mutation on a β+ chromosome. Blood 1989; 74: 1817–22
  • Orkin S H., Kazazian H H., Antonarakis S E., et al. Linkage of β-thalassemic mutations and β-globin gene polymorphisms with DNA polymorphisms in the human β-globin gene cluster. Nature 1982; 296: 627–31
  • Trelsman R, Orkin S H., Maniatis T. Specific transcription and RNA splicing defects in five cloned β-thalassaemia genes. Nature 1983; 302: 591–6
  • Meloni A, Rosatelli M C., Faà V, et al. Promoter mutations producing mild β-thalassaemia in the Italian population. Br J Haematol 1992; 80: 222–6
  • Takihara Y, Nakamura T, Yamada H, Takagl Y, Fukumaki Y. A novel mutation in the TATA box in a Japanese patient with β+ -thalassemia. Blood 1986; 67: 547–50
  • Huang S-Z, Wong C, Antonarakis S E., Rolein T, Lo W HY, Kazazian H H. The same TATA box β-thalassemia mutation in Chinese and US blacks: another example of independent origin of mutation. Hum Genet 1986; 74: 162–4
  • Antonarakis S E., Orkin S H., Cheng T-C, et al. β-thalassemia in American blacks: novel mutations in the ‘TATA’ box and an acceptor splice site. Proc Natl Acad Sci USA 1984; 81: 1154–8
  • Poncz M, Ballantine M, Solowiejczyk D, Barak I, Schwartz E, Surrey S. β-thalassemia in a Kurdish Jew. J Biol Chem 1983; 257: 5994–6
  • Orkin S H., Sexton J P., Cheng T-C, et al. DATA box transcription mutation in β-thalassemia. Nucleic Acids Res 1983; 11: 4727–34
  • Berg P E., Mittelman M, Elion J, Labie D, Schechter A N. Increased protein binding to a -530 mutation of the human globin gene associated with decreased betaglobin hesis. Am J Hematol 1991; 36: 42–7
  • Mol P, Loudlanos G, Lavinha J, et al. Delta-thalassemia due to a mutation in an erythroid-specific binding protein sequence 3′ to the delta-globin gene. Blood 1992; 79: 512–6
  • Ottolenghi S, Mantovani R, Nicolis S, Ronchi A, Giglloni B. DNA sequences regulating human globin gene transcription in nondeletional hereditary persistence of fetal hemoglobin. Hemoglobin 1989; 13: 523–41
  • öner R, Kutlar F, Gu L-H, Huisman T HJ. The Georgia type of nondeletional hereditary persistence of fetal hemoglobin has a CT mutation at nucleotide –114 of the A-gamma globin gene. Blood 1991; 77: 1124–8
  • Collins F S., Metherall J E., Yamakawa M, Pan J, Weissman S M., Forget B G. A point mutation in the A-gamma globin gene promoter in Greek hereditary persistence of fetal haemoglobin. Nature 1985; 313: 325–6
  • Gelinas R, Endlich B, Pfeiffer C, Yagi M, Stamatoyannopoulos G. G to A substitution in the distal CCAAT box of the A-gamma globin gene in Greek hereditary persistence of fetal haemoglobin. Nature 1985; 313: 323–4
  • Stoming T A., Stoming G S., Lanclos K D., et al. An A-gamma type of nondeletional hereditary persistence of fetal hemoglobin with a TC mutation at position –175 to the Cap site of the A-gamma globin gene. Blood 1989; 73: 329–33
  • Costa F F., Zago M A., Cheng G, Nechtman J F., Stoming T A., Huisman T HJ. The Brazilian type of nondeletional A-gamma fetal hemoglobin has a CG substitution at nucleotide –195 of the A-gamma globin gene. Blood 1990; 76: 1896–7
  • Gelinas R, Bender M, Lotshaw C, Waber P, Kazazian H, Stamatoyannopoulos G. Chinese A-gamma fetal hemoglobin: C to T substitution at position –196 of the A-gamma gene promoter. Blood 1986; 67: 1777–9
  • Giglioni B, Casini C, Mantovani R, et al. A molecular study of a family with Greek hereditary persistence of fetal hemoglobin and β-thalassaemia. EMBO J 1984; 3: 2641–5
  • Ottolenghl S, Giglioni B, Pulazzinl A, et al. Sardinian delta beta° thalassemia: a further example of a C to T substitution of position—196 of the A-gamma globin gene promoter. Blood 1987; 69: 1058–61
  • Tate V E., Wood W G., Weatherall D J. The British form of hereditary persistence of fetal hemoglobin results from a single base mutation adjacent to an S1 hypersensitive site 5′ to the A-gamma globin gene. Blood 1986; 68: 1389–93
  • Gilman J G., Mishima N, Wen X J., Kutlar F, Huisman T HJ. Upstream promoter mutation associated with a modest elevation of fetal hemoglobin expression in human adults. Blood 1988; 72: 78–81
  • Fucharoen S, Shimizu K, Fukumaki Y. A novel CT transition within the distal CCAAT motif of the G-gamma globin gene in the Japanese HPFH: implication of factor binding in elevated fetal globin expression. Nucleic Acids Res 1990; 18: 5245–53
  • Gilman J G., Huisman T HJ. DNA sequence variation associated with elevated fetal G-gamma globin production. Blood 1985; 66: 783–7
  • Labie D, Dunda-Belkhodja O, Rouabhi F, Pagnier J, Ragusa A, Nagel R L. The—158 site 5′ to the G-gamma gene and G-gamma expression. Blood 1985; 66: 1463–5
  • Miller B A., Salameh M, Ahmed M, et al. High fetal hemoglobin production in sickle cell anemia in the Eastern province of Saudi Arabia is genetically determined. Blood 1986; 67: 1404–10
  • Ottolenghl S, Nicolis S, Taramelli R, et al. Sardinian G-gamma HPFH: a TC substitution in a conserved ‘octamer’ sequence in the G-gamma globin promoter. Blood 1988; 71: 815–7
  • Surrey S, Delgrosso K, Malladi P, Schwartz E. A single base change at position—175 in the 5′ flanking region of the G-gamma globin gene from a black with G-gamma- β+ HPFH. Blood 1988; 71: 807–10
  • Collins F S., Stoeckert C J., Serjeant G R., Forget B G., Weissman S M. G-gamma beta+ hereditary persistence of fetal hemoglobin: cosmid cloning and identification of a specific mutation 5′ to the G-gamma gene. Proc Natl Acad Sci USA 1984; 81: 4894–8
  • La Thangue N B., Rigby P WJ. Trans-acting protein factors and regulation of eukaryotic transcription. Transcription and splicing, B D. Hames, D M. Glover. IRL Press, Oxford 1988, Chapter 1
  • Gumucio D L., Rood K L., Blanchard-McQuate K L., Gray T A., Saulino A, Collins F S. Interaction of Sp1 with the human gamma globin promoter: binding and transactivation of normal and mutant promoters. Blood 1991; 78: 1853–63
  • Sykes K, Kaurman R. A naturally occurring gamma globin gene mutation enhances SP1 binding activity. Mol Cell Biol 1990; 10: 95–102
  • Rixon M W., Gelinas R E. A fetal globin gene mutation in A gamma nondeletion hereditary persistence of fetal hemoglobin increases promoter strength in a non-erythroid cell. Mol Cell Biol 1988; 8: 713–21
  • Fischer K D., Nowock J. The TC substitution at—198 of the A gamma-globin gene associated with the British form of HPFH generates overlapping recognition sites for two DNA-binding proteins. Nucleic Acids Res 1990; 18: 5685–93
  • Martin D IK, Tsal S-F, Orkin S H. Increased gamma-globin expression in a nondeletion HPFH mediated by an erythroid-specific DNA-binding factor. Nature 1989; 338: 435–8
  • Lloyd J A., Lee R F., Lingrei J B. Mutations in two regions upstream of the A gamma globin gene canonical promoter affect gene expression. Nucleic Acids Res 1989; 17: 4339–52
  • Gumucio D L., Lockwood W K., Weber J L., et al. The—175 TC mutation increases promoter strength in erythroid cells: correlation with evolutionary conservation of binding sites for two trans-acting factors. Blood 1990; 75: 756–61
  • McDonagh K T., Lin H J., Lowrey C H., Bodine D M., Nienhuis A W. The upstream region of the human gammaglobin gene promoter. Identification and functional analysis of nuclear protein binding sites. J Biol Chem 1991; 266: 11965–74
  • Nicolis S, Ronchi A, Malgaretti N, Mantovani R, Giglioni B, Ottolenghi S. Increased erythroid-specific expression of a mutated HPFH gamma-globin promoter requires the erythroid factor NFE-1. Nucleic Acids Res 1989; 17: 5509–16
  • Mantovani R, Malgaretti N, Nicolis S, Ronchi A, Giglioni B, Ottolenghi S. The effects of HPFH mutations in the human gamma-globin promoter on binding of ubiquitous and erythroid-specific nuclear factors. Nucleic Acids Res 1988; 16: 7783–97
  • Gumucio D L., Rood K L., Gray T A., Riordan M F., Sartor C I., Collins F S. Nuclear proteins that bind the human gamma-globin gene promoter: alterations in binding produced by point mutations associated with hereditary persistence of fetal hemoglobin. Mol Cell Biol 1988; 8: 5310–22
  • O'Neil D, Kaysen J, Donovan-Peluso M, Castle M, Bank A. Protein-DNA interactions upstream from the human A gamma globin gene. Nucleic Acids Res 1990; 18: 1977–82
  • Stoeckert C J., Metherall J E., Yamakawa M, Weissman S M., Forget B G. Expression of the affected A gamma globin gene associated with Greek nondeletion hereditary persistence of fetal hemoglobin. Mol Cell Biol 1987; 7: 2999–3003
  • Superti-Furga G, Barberis A, Schaffner G, Busslinger M. The—117 mutation in Greek HPFH affects the binding of three nuclear factors to the CCAAT region of the gamma-globin gene. EMBO J 1988; 7: 3099–107
  • Berry M, Grosveld F, Dillon N. A single point mutation is the cause of the Greek form of hereditary persistence of fetal haemoglobin. Nature 1992; 358: 499–502
  • Behringer R R., Ryan T M., Palmiter R D., Brinster R L., Townes T M. Human gamma- to beta-globin switching in transgenic mice. Genes Dev 1990; 4: 380–9
  • Hanscombe O, Whyatt D, Fraser P, et al. Importance of globin gene order for correct developmental expression. Genes Dev 1991; 5: 1387–94
  • Briët E, Bertina R M., van Tilburg N H., Veltkamp J J. Haemophilia B Leyden; a sex-linked hereditary disorder that improves after puberty. N Engl J Med 1982; 306: 788–92
  • Reitsma P H., Bertina R M., van Amstel J K., Ploos Riemans A, Briët E. The putative factor IX gene promoter in hemophilia B Leyden. Blood 1988; 72: 1074–6
  • Tsang C T., Bentley D R., Mibashan R S., Giannelli F. A factor IX mutation, verified by direct genomic sequencing, causes haemophilia B by a novel mechanism. EMBO J 1988; 7: 3009–15
  • Pang C-P, Crossley M, Kent G, Brownlee G G. Comparative sequence analysis of mammalian factor IX promoters. Nucleic Acids Res 1990; 18: 6731
  • Reitsma P H., Mandalaki T, Kasper C K., Bertina R M., Briët E. Two novel point mutations correlate with an altered developmental expression of blood coagulation factor IX (hemophilia B Leyden phenotype). Blood 1989; 73: 743–6
  • Crossley M, Winship P, Brownlee G G. Functional analysis of the normal and an aberrant factor IX promoter. Regulation of liver gene expression. Cold Springer Harbor Laboratory, New York 1989; 51
  • Bottema C DK, Koeberi D D., Sommer S S. Direct carrier testing in 14 families with haemophilia B. Lancet 1989; ii: 526–9
  • Hirosawa S, Farmer J B., Salier J-P, Wu C-T, Lovrien E W., Kurachi K. Structural and functional basis of the developmental regulation of human coagulation factor IX gene: factor IX Leyden. Proc Natl Acad Sci USA 1990; 87: 4421–5
  • Crossley M, Winship P R., Austen D EG, Rizza C R., Brownlee G G. A less severe form of haemophilia B Leyden. Nucleic Acids Res 1990; 18: 4633
  • Gispert S, Vidaud M, Vidaud D, Gazengel C, Boneu B, Goossens M. A promoter defect correlates with an abnormal coagulation factor IX gene expression in a French family (Hemophilia B Leyden). Am J Hum Genet 1989; 45(Suppl)A189
  • Royle G, van de Water N S., Berry E, Ockelford P A., Browett P J. Haemophilia B Leyden arising de novo by point mutation in the putative factor IX promoter region. Br J Haematol 1991; 77: 191–4
  • Freedenberg D L., Black B. Altered developmental control of the factor IX gene: a new T to A mutation at position +6 of the FIX gene resulting in hemophilia B Leyden. Thromb Haemost 1991; 65: 964
  • Picketts D J., D'Souza C, Bridge P J., Lillicrap D. An A to T transversion at position—5 of the factor IX promoter results in hemophilia B. Genomics 1992; 12: 161–3
  • Crossley M, Brownlee G G. Disruption of a C/EBP binding site in the factor IX promoter is associated with haemophilia B. Nature 1990; 345: 444–6
  • Reijnen M J., Sladek F M., Bertina R M., Reitsma P H. Disruption of a binding site for hepatocyte nuclear factor 4 results in hemophilia B Leyden. Proc Natl Acad Sci USA 1992; 89: 6300–3
  • Crossley M, Ludwig M, Stowell K M., De Vos P, Olek K, Brownlee G G. Recovery from hemophilia B Leyden: an androgen-responsive element in the factor IX promoter. Science 1992; 257: 377–9
  • Thomson A A., Ham J, Bakker O, Parker M G. The progesterone receptor can regulate transcription in the absence of a functional TATA box element. J Biol Chem 1990; 265: 16709–12
  • Van der Ploeg L HT, Konings A, Oort M, Roos D, Bernini L, Flavell R A. Gamma-beta-thalassaemia studies showing that deletion of the gamma- and delta-genes influences β-globin gene expression in man. Nature 1980; 283: 637–42
  • Kioussis D, Vanin E, deLange T, Flavell R A., Grosveld F G. β-globin gene inactivation by DNA translocation in gamma-beta-thalassaemia. Nature 1983; 306: 662–6
  • Curtin P, Pirastu M, Kan Y W., Gobert-Jones J A., Stephens A D., Lehmann H. A distant gene deletion affects β-globin gene function in an atypical gamma-delta-beta-thalassemia. J Clin Invest 1985; 76: 1554–8
  • Driscoll M C., Dobkin C S., Alter B P. Gamma-delta-beta-thalassemia due to a de novo mutation deleting the 5′ β-globin gene activation-region hypersensitive sites. Proc Natl Acad Sci USA 1989; 86: 7470–4
  • Grosveld F, van Assendelft G B., Greaves D R., Kollias G. Position-independent high-level expression of the human β-globin gene in transgenic mice. Cell 1987; 51: 975–85
  • Tuan D YH, Solomon W B., London I M., Lee D P. An erythroid-specific, developmental-stage-independent enhancer far upstream of the human ‘β-like globin’ genes. Proc Natl Acad Sci USA 1989; 86: 2554–8
  • Morley B J., Abbott C A., Sharpe J A., Lida J, Chan-Thomas P S., Wood W G. A single β-globin locus control region element (5′ hypersensitive site 2) is sufficient for developmental regulation of human globin genes in transgenic mice. Mol Cell Biol 1992; 12: 2057–66
  • Kim C G., Epner E M., Forrester W C., Groudine M. Inactivation of the human β-globin gene by targeted insertion into the β-globin locus control region. Genes Dev 1992; 6: 928–38
  • Forrester W C., Epner E, Driscoll M C., et al. A deletion of the human β-globin locus activation region causes a major alteration in chromatin structure and replication across the entire β-globin locus. Genes Dev 1990; 4: 1637–49
  • Hatton C SR, Wilkie A OM, Drysdale H C., et al. Alpha-thalassemia caused by a large (62 kb) deletion upstream of the human alpha globin gene cluster. Blood 1990; 76: 221–7
  • Wilkie A OM, Lamb J, Harris P C., Finney R D., Higgs D R. A truncated human chromosome 16 associated with alpha-thalassaemia is stabilized by addition of telomeric repeat (TTAGGG). Nature 1990; 346: 868–71
  • Romao L, Cash F, Weiss I, et al. Human alpha-globin gene expression is silenced by terminal truncation of chromosome 16p beginning immediately 3′ of the zetaglobin gene. Hum Genet 1992; 89: 323–8
  • Liebhaber S A., Griese E-U, Weiss I, Cash F E., Ayyub H, Higgs D R., Horst J. Inactivation of human alpha-globin gene expression by a de novo deletion located upstream of the alpha-globin gene cluster. Proc Natl Acad Sci USA 1990; 87: 9431–5
  • Romao L, Osorio-Almeida L, Higgs D R., Lavinha J, Liebhaber S A. Alpha-thalassemia resulting from deletion of regulatory sequences far upstream of the alpha-globin structural genes. Blood 1991; 78: 1589–95
  • Higgs D R., Wood W G., Jarman A P., et al. A major positive regulatory region located far upstream of the human alpha-globin gene locus. Genes Dev 1990; 4: 1588–93
  • Vyas P, Vickers M A., Simmons D L., Ayyub H, Craddock C F., Higgs D R. Cis-acting sequences regulating expression of the human alpha-globin cluster lie within constitutively open chromatin. Cell 1992; 69: 781–93
  • Jarman A P., Wood W G., Sharpe J A., Gourdon G, Ayyub H, Higgs D R. Characterization of the major regulatory element upstream of the human alpha-globin gene cluster. Mol Cell Biol 1991; 11: 4679–89
  • Watanabe K, Salto A, Tamaoki T. Cell-specific enhancer activity in a far upstream region of the human alpha-fetoprotein gene. J Biol Chem 1987; 262: 4812–8
  • Murakami T, Nishiyori A, Takiguchi M, Mori M. Promoter and 11 kb upstream enhancer elements responsible for hepatoma cell-specific expression of the rat ornithine transcarbamylase gene. Mol Cell Biol 1990; 10: 1180–91
  • Higuchi M, Kazazian H H., Kasch L, et al. Molecular characterization of severe hemophilia A suggests that about half the mutations are not within the coding regions and splice junctions of the factor VIII gene. Proc Natl Acad Sci USA 1991; 88: 7405–9
  • Sakai T, Ohtani N, McGee T L., Robbins P O., Dryja T P. Oncogenic germ-line mutations in Sp1 and ATF sites in the human retinoblastoma gene. Nature 1991; 353: 83–6
  • Jeenah M, Kessling A, Miller N, Humphries S. G to A substitution in the promoter region of the apolipoprotein Al gene is associated with elevated serum apolipoprotein Al and high density lipoprotein cholesterol concentrations. Mol Biol Med 1990; 7: 233–41
  • Sigurdsson G, Gudnason V, Sigurdsson G, Humphries S E. Interaction between a polymorphism of the apolipoprotein Al promoter region and smoking determines plasma levels of high density lipoprotein and apolipoprotein Al. Arterosclerosis 1992, (in press)
  • Pagani F, Sidoli A, Guidici G A., Barenghi L, Vergani C, Baralle F E. Human apolipoprotein Al promoter polymorphism: association with hyperalphalipoproteinaemia. J Lipid Res 1990; 31: 1371–7
  • Paul-Hayase H, Rosseneu M, Robinson D, Van Bervliet J P., Deslypere J P., Humphries S E. Polymorphisms in the apolipoprotein (apo) AI-CIII-AIV gene cluster: detection of genetic variation determining plasma apoAl, apoCIII and apoAIV concentrations. Hum Genet 1992; 88: 439–46
  • Tuteja R, Tuteja N, Melo C, Casari G, Baralle F E. Transcription efficiency of human apolipoprotein A-1 promoter varies with naturally occurring A to G transition. FEBS Letts 1992; 304: 98–101
  • Papazafiri P, Ogami K, Ramji D P., Nicosia A, Monaki P, Cladaras C, Zannis V I. Promoter elements and factors involved in hepatic transcription of the human apoA1 gene positive and negative regulators bind to overlapping sites. J Biol Chem 1991; 266: 5790–7
  • Oiansky L, Welling C, Giddings S, et al. A variant insulin promoter in non-insulin-dependent diabetes mellitus. J Clin Invest 1992; 89: 1596–1602
  • Dawson S J., Wiman B, Hamsten A, Green F, Humphries S, Henney A M. The two allele sequences of a common polymorphism in the promoter of the plasminogen activator inhibitor-1 (PAI-1) gene respond differently to IL-1 in HepG2 cells. J Biol Chem 1992, (in press)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.