72
Views
120
CrossRef citations to date
0
Altmetric
Miscellaneous Article

Regulation and Functional Consequences of Endothelial Nitric Oxide Formation

&
Pages 331-340 | Published online: 08 Jul 2009

References

  • Furchgott R F, Zawadzki J V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288: 373–6
  • Furchgott R F. Studies on relaxation of rabbit aorta by sodium nitrite: the basis for the proposal that the acid-activable inhibitory factor from bovine retractor penis is organic nitrite and the endothelium-derived relaxing factor is nitric oxide. Mechanisms of vasodilation, P M Vanhoutte. Raven Press, New York 1988; 401–18
  • Ignarro L J, Byrns R, Buga G M, Wood R S, Chaudhuri G. Pharmacological evidence that endothelium-derived relaxing factor is nitric oxide: use of pyrogallol and superoxide dismutase to study the endothelium-dependent and nitric oxide elicited vascular smooth muscle relaxation. J Pharmacol Exp Ther 1987; 244: 181–9
  • Palmer R MJ, Ferrige A G, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327: 524–6
  • Myers P R, Minor R L, Guerra R, Bates J N, Harrison D G. Vasorelaxant properties of the endothelium-derived relaxing factor more closely resembles S-nitrosocysteine than nitric oxide. Nature 1990; 345: 161–3
  • Feelisch M, te Poet M, Zamora R, Deussen A, Moncada S. Understanding the controversy over the identity of EDRF. Nature 1994; 368: 62–5
  • Mülsch A, Vanin A, Mordvincev P, Hauschildt S, Busse R. Electron paramagnetic resonance study of the oxygenated nitrogen species generated by enzymatic L-arginine oxidation. Biochem J 1992; 288: 597–603
  • Marsden P A, Heng H HQ, Scherer S W, et al. Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene. J Biol Chem 1993; 268: 17478–88
  • Nadaud S, Bonnardeaux A, Lathrop M, Soubrier F. Gene structure, polymorphism and mapping of the human endothelial nitric oxide synthase gene. Biochem Biophys Res Commun 1994; 198: 1027–33
  • Sessa W C, Harrison J K, Barber C M, et al. Molecular cloning and expression of a cDNA encoding endothelial cell nitric oxide synthase. J Biol Chem 1992; 267: 15274–6
  • Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J 1992; 6: 3051–64
  • Kilbourn R G, Belloni P. Endothelial cell production of nitrogen oxides in response to interferon in combination with tumor necrosis factor, interleukin-1, or endotoxin. J Natl Cancer Inst 1990; 82: 772–6
  • Lamas S, Michel T, Brenner B M, Marsden P A. EDRF synthesis by endothelial cells: evidence for a pathway induced by TNF-α. Am J Physiol 1991; 261: C634–41
  • White K A, Marietta M A. Nitric oxide synthase is a cytochrome P-450 type hemoprotein. Biochemistry 1992; 31: 6627–31
  • Stuehr D J, Ikeda-Saito M. Spectral characterization of brain and macrophage nitric oxide synthases. J Biol Chem 1992; 267: 10547–50
  • Pollock J S, Förstermann U, Mitchell J A, et al. Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proc Natl Acad Sci USA 1991; 88: 10480–4
  • Boje K M, Fung H. Endothelial nitric oxide generating enzymes in the bovine aorta: subcellular localization and metabolic characterization. J Pharmacol Exp Ther 1990; 253: 20–6
  • Busconi L, Michel T. Endothelial nitric oxide synthase: N-terminal myristoylation determines sub cellular localization. J Biol Chem 1993; 268: 8410–3
  • Hecker M, Mülsch A, Bassenge E, Förstermann U, Busse R. Subcellular localization and characterization of nitric oxide synthase(s) in endothelial cells: physiological implications. Biochem J 1994; 299: 247–52
  • Janssens S P, Shimouchi A, Quertermous T, Bloch D B, Bloch K D. Cloning and expression of a cDNA encoding human endothelium-derived relaxing factor/nitric oxide synthase. J Biol Chem 1992; 267: 14519–22
  • Marsden P A, Schappert K T, Chen H S, et al. Molecular cloning and characterization of human endothelial nitric oxide synthase. FEBS Lett 1992; 307: 287–93
  • Lamas S, Marsden P A, Li G K, Tempst P, Michael T. Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci USA 1992; 89: 6348–52
  • Nishida K, Harrison D G, Navas J P, et al. Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase. J Clin Invest 1992; 90: 2092–6
  • Sessa W C, Barber C M, Lynch K R. Mutation of N-myristoylation site converts endothelial cell nitric oxide synthase from a membrane to a cytosolic protein. Circ Res 1993; 72: 921–4
  • Busse R, Mülsch A. Calcium-dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin. FEBS Lett 1990; 265: 133–6
  • Newby A C, Henderson A H. Stimulus-secretion coupling in vascular endothelial cells. Annu Rev Physiol 1990; 52: 661–74
  • Rubanyi G M, Romero J C, Vanhoutte P M. Flow-induced release of endothelium-derived relaxing factor. Am J Physiol 1986; 250: H1145–9
  • Pohl U, Holtz J, Busse R, Bassenge E. Critical role of endothelium in the vasodilator response to increased flow in vivo. Hypertension 1986; 8: 37–44
  • Pohl U, Busse R. Hypoxia stimulates the release of endothelium-derived relaxing factor (EDRF). Am J Physiol 1989; 256: H1595–660
  • Fleming I, Hecker M, Busse R. Intracellular alkalinization induced by bradykinin sustains activation of the constitutive nitric oxide synthase in endothelial cells. Circ Res 1994; 74: 1220–6
  • Ghigo D, Bussolino F, Garbarino G, et al. Role of Na+/H+ exchange in thrombin-induced platelet activating factor production by human endothelial cells. J Biol Chem 1988; 263: 19437–66
  • Kitazono T, Takeshlge K, Cragoe E J, Minakami S. Intracellular pH changes of cultured bovine aortic endothelial cells in response to ATP addition. Biochem Biophys Res Commun 1988; 152: 1304–9
  • Thuringer D, Diarra A, Sauvé R. Modulation by extracellular pH of bradykinin evoked activation of Ca2+-activated K+ channels in endothelial cells. Am J Physiol 1991; 261: H656–66
  • Danthuluri N R, Kim D, Brock T A. Intracellular alkalinisation leads to Ca2+ mobilization from agonist-sensitive pools in bovine aortic endothelial cells. J Biol Chem 1990; 265: 19071–6
  • Michel T, LI G K, Busconi L. Phosphorylation and subcellular translocation of endothelial nitric oxide synthase. Proc Natl Acad Sci USA 1993; 90: 6252–6
  • Hecker M, Lückhoff A, Busse R. Modulation of endothelial autacoid release by protein kinase C: feedback inhibition or non-specific attenuation of receptor-dependent cell activation. J Cell Physiol 1993; 156: 571–8
  • Davada R K, Chandler L J, Guzman N J. Protein kinase C modulates receptor-independent activation of endothelial nitric oxide synthase. Eur J Pharmacol 1994; 266: 237–44
  • Bredt D S, Ferris C D, Snyder S H. Nitric oxide synthase regulatory sites. J Biol Chem 1992; 267: 10976–84
  • Griffith T M, Edwards D H. Myogenic autoregulation of flow may be inversely related to endothelium-derived relaxing factor activity. Am J Physiol 1990; 258: H1171–80
  • Pohl U, Herian K, Huang A, Bassenge E. EDRF-mediated shear-induced dilation opposes myogenic vasoconstriction in small rabbit arteries. Am J Physiol 1991; 261: H2016–23
  • Busse R, Mülsch A, Fleming I, Hecker M. Mechanisms of nitric oxide release from the vascular endothelium. Circulation 1993; 87(Suppl V)V18–25
  • Lamontagne D, Pohl U, Busse R. Mechanical deformation of the vessel wall and shear stress determine the basal EDRF release in the intact coronary vascular bed. Circ Res 1992; 70: 123–30
  • Hecker M, Mülsch A, Bassenge E, Busse R. Vasoconstriction and increased flow: two principal mechanisms of shear stress-dependent endothelial autacoid release. Am J Physiol 1993; 265: H828–33
  • Langille B L, Graham J JK, Kim D, Gotlieb A I. Dynamics of shear-induced redistribution of F-actin in endothelial cells in vivo. Arterioscler Thromb 1991; 11: 1814–20
  • Thurston G, Baldwin A L. Endothelial actin cytoskeleton in rat mesentery microvasculature. Am J Physiol 1994; 266: H1896–909
  • Franke R-P, Grafe M, Schnittler H, Seiffge D, Mittermayer C, Drenckhahn D. Induction of human vascular endothelial stress fibres by fluid shear stress. Nature 1984; 307: 648–9
  • Wechezak A R, Viggers R F, Sauvage L R. Fibronectin and F-actin redistribution in cultured endothelial cells exposed to shear stress. Lab Invest 1985; 53: 639–47
  • Barbee K A, Davies P F, Lai R. Shear stress-induced reorganization of the surface topography of living endothelial cells imaged by atomic force microscopy. Circ Res 1994; 74: 163–71
  • Morita T, Kurihara H, Maemura K, Yoshizumi M, Yazaki Y. Disruption of cytoskeletal structures mediates shear stress-induced endothelin-1 gene expression in cultured porcine aortic endothelial cells. J Clin Invest 1993; 92: 1706–12
  • Davies P F, Barbee K A. Endothelial cell surface imaging: insights into hemodynamic force transduction. News Physiol Sci 1994; 9: 153–7
  • Bhagyalakshmi A, Berthiaume F, Reich K M, Frangos J A. Fluid shear stress stimulates membrane phospholipid metabolism in cultured human endothelial cells. J Vase Res 1992; 29: 443–9
  • Nollert M U, Eskin S G, McIntyre L V. Shear stress increases inositol trisphosphate levels in human endothelial cells. Biochem Biophys Res Commun 1990; 170: 281–7
  • Prasad A RS, Logan S A, Nerem R M, Schwartz C J, Sprague E A. Flow-related responses of intracellular inositol phosphate levels in cultured aortic endothelial cells. Circ Res 1993; 72: 827–36
  • Ohno M, Gibbons G H, Dzau V J, Cooke J P. Shear stress elevates endothelial cGMP. Role of a potassium channel and G protein coupling. Circulation 1993; 88: 193–7
  • Ranjan V, Diamond S L. Fluid shear stress induces synthesis and nuclear localization of c-fos in cultured human endothelial cells. Biochem Biophys Res Commun 1993; 196: 79–84
  • Lan Q, Mercurius K O, Davies P. Stimulation of transcription factors NFK and AP1 in endothelial cells subjected to shear stress. Biochem Biophys Res Commun 1994; 201: 950–6
  • Sigurdson W J, Sachs F, Diamond S L. Mechanical perturbation of cultured human endothelial cells causes rapid increases of intracellular calcium. Am J Physiol 1993; 264: H1745–52
  • Demer L L, Wortham C M, Dirksen E R, Sanderson M J. Mechanical stimulation induced intracellular calcium signalling in bovine aortic endothelial cells. Am J Physiol 1993; 264: H2094–102
  • Oike M, Droogmans G, Nilius B. Mechanosensitive Ca2+ transients in endothelial cells from human umbilical vein. Proc Natl Acad Sci USA 1994; 91: 2940–4
  • Schwarz G, Callewaert G, Droogmans G, Nilius B. Shear-stress-induced calcium transients in endothelial cells from human umbilical cord veins. J Physiol 1992; 458: 527–38
  • Falcone J C, Kuo L, Meininger G A. Endothelial cell calcium increases during flow-induced dilation in isolated arteries. Am J Physiol 1993; 264: H653–9
  • Shen J, Luscinskas F W, Connolly A, Dewey C F, Jr, Gimbrone M A, Jr. Fluid shear stress modulates cytosolic free calcium in vascular endothelial cells. Am J Physiol 1992; 262: C384–90
  • Schwarz G, Droogmans G, Nilius B. Shear stress induced membrane currents and calcium transients in human vascular endothelial cells. Pflügers Arch 1992; 421: 394–6
  • Macarthur H, Hecker M, Busse R, Vane J R. Selective inhibition of agonist-induced but not shear stress-dependent release of endothelial autacoids by thapsigargin. Br J Pharmacol 1993; 108: 100–5
  • Kuchan M J, Frangos J A. Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am J Physiol 1994; 266: C628–36
  • Ziegelstein R C, Cheng L, Capogrossi M C. Flow- dependent cytosolic acidification of vascular endothelial cells. Science 1992; 258: 656–9
  • Assreuy J, Cunha F Q, Liew F Y, Moncada S. Feedback inhibition of nitric oxide synthase activity by nitric oxide. Br J Pharmacol 1993; 108: 833–7
  • Benzing T, Winter I, Busse R. Feedback inhibition by NO of the Ca2+-dependent autacoid formation in human endothelial cells is mediated by cyclic GMP. Pflügers Arch 1992; 420(Suppl 1)467, (Abstract)
  • Shin W S, Sasaki T, Kato M, et al. Autocrine and paracrine effects of endothelium-derived relaxing factor on intracellular Ca2+ of endothelial cells and vascular smooth muscle cells. J Biol Chem 1992; 267: 20377–82
  • Morgan R O, Newby A C. Nitroprusside differentially inhibits ADP-stimulated calcium influx and mobilization in human platelets. Biochem J 1989; 258: 447–54
  • Hoyt K R, Tang L-H, Aizenman E, Reynolds I J. Nitric oxide modulates NMDA-induced increases in intracellular Ca2+ in cultured rat forebrain neurones. Brain Res 1992; 592: 310–6
  • Garg U C, Hassid A. Nitric oxide decreases cytosolic free calcium in Balb/c 3T3 fibroblasts by a cyclic GMP-independent mechanism. J Biol Chem 1991; 266: 9–12
  • Lang D, Lewis M J. Endothelium-derived relaxing factor inhibits the formation of inositol trisphosphate by rabbit aorta. J Physiol 1989; 411: 45–52
  • Ormandy G C, Jope R S. Sodium nitroprusside and guanosine 3′,5′-monophosphate (cyclic GMP) inhibit stimulated phosphoinositide hydrolysis in rat cerebral cortical slices. Neurosci Lett 1989; 100: 287–91
  • Hogan J C, Smith J A, Richards A C, Lewis M J. Atrial natriuretic peptide inhibits the release of endothelium-derived relaxing factor from blood vessels of the rabbit. Eur J Pharmacol 1989; 165: 129–34
  • Doni M G, Whittle B JR, Palmer R MJ, Moncada S. Actions of nitric oxide on the release of prostacyclin from bovine endothelial cells in culture. Eur J Pharmacol 1988; 151: 19–25
  • Evans H G, Smith J A, Lewis M J. Release of endothelium-derived relaxing factor is inhibited by 8-bromo-cyclic guanosine monophosphate. J Cardiovasc Pharmacol 1988; 12: 672–7
  • Lang D, Lewis M J. Inhibition of inositol 1,4,5-trisphosphate formation by cyclic GMP in cultured aortic endothelial cells of the pig. Br J Pharmacol 1991; 102: 277–81
  • Marczin N, Ryan U S, Catravas J D. Endothelial cGMP does not regulate basal release of endothelium-derived relaxing factor in culture. Am J Physiol 1992; 263: L113–21
  • Kuhn M, Otten A, Frölich J C, Förstermann U. Endothelial cyclic GMP and cyclic AMP do not regulate the release of endothelium-derived relaxing factor/nitric oxide from bovine aortic endothelial cells. J Pharmacol Exp Ther 1991; 256: 677–82
  • Buchan K W, Martin W. Modulation of agonist-induced calcium mobilisation in bovine aortic endothelial cells by phorbol myristate and cyclic AMP but not cyclic GMP. Br J Pharmacol 1991; 104: 361–6
  • Fleming I, Fisslthaler B, Busse R. Calcium signalling in endothelial cells involves activation of tyrosine kinases and leads to activation of MAP kinase. Circ Res 1995; 76: 522–9
  • Lander H M, Sehajpal P K, Novogrodsky A. Nitric oxide signaling: a possible role for G proteins. J Immunol 1993; 151: 7182–7
  • Gallone A, White A, Willmott N, Turner M, Potter B VL, Watson S P. cGMP mobilizes intracellular Ca2+ in sea urchin eggs by stimulating ADP-ribose synthesis. Nature 1993; 365: 456–9
  • Graier W F, Groschner K, Schmidt K, Kukovetz W R. Increases in endothelial cyclic AMP levels amplify agonist-induced formation of endothelium-derived relaxing factor (EDRF). Biochem J 1992; 288: 345–9
  • Lee H C. A signaling pathway involving cyclic ADP-ribose, cGMP, and nitric oxide. News Physiol Sci 1994; 9: 134–7
  • Sun D, Huang A, Koller A, Kaley G. Short-term daily exercise activity enhances endothelial NO synthesis in skeletal muscle arterioles of rats. J Appl Physiol 1994; 76: 2241–7
  • Wang J, Wolin M S, Hintze T H. Chronic exercise enhances endothelium-mediated dilation of epicardial coronary artery in conscious dogs. Circ Res 1993; 73: 829–38
  • Sessa W C, Pritchard K, Seyedi N, Wang J, Hintze T H. Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res 1994; 74: 349–53
  • Malek A M, Jackman R, Rosenberg R D, Izumo S. Endothelial expression of thrombomodulin is reversibly regulated by fluid shear stress. Circ Res 1994; 74: 852–60
  • Resnick N, Collins T, Atkinson W, Bonthron D T, Dewey C F, Jr, Gimbrone M A, Jr. Platelet-derived growth factor β chain promoter contains a cis-acting fluid shear-stress-responsive element. Proc Natl Acad Sci USA 1993; 90: 4591–5
  • Malek A M, Gibbons G H, Dzau V J, Izumo S. Fluid shear stress differentially modulates expression of genes encoding basic fibroblast growth factor and platelet-derived growth factor B chain in vascular endothelium. J Clin Invest 1993; 92: 2013–21
  • Morita T, Yoshizumi M, Kurihara H, Maemura K, Nagai R, Yazaki Y. Shear stress increases heparin-binding epidermal growth factor-like growth factor mRNA levels in human vascular endothelial cells. Biochem Biophys Res Commun 1993; 197: 256–62
  • Shyy Y-J, Hsieh H-J, Usami S, Chien S. Fluid shear stress induces a biphasic response of human monocyte chemotactic protein 1 gene expression in vascular endothelium. Proc Natl Acad Sci USA 1994; 91: 4678–82
  • Malek I. Physiological fluid shear stress causes down regulation of endothelin-1 mRNA in bovine aortic endothelium. Am J Physiol 1992; 263: C389–96
  • Yoshizumi M, Perrella M A, Burnett J C, Jr, Lee M-E. Tumor necrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half-life. Circ Res 1993; 73: 205–9
  • Rosenkranz-Weiss P, Sessa W C, Milstien S, Kaufman S, Watson C A, Pober J S. Regulation of nitric oxide synthesis by proinflammatory cytokines in human umbilical vein endothelial cells. J Clin Invest 1994; 93: 2236–43
  • Grady D, Rubin S M, Petitti D B, et al. Hormone therapy to prevent disease and prolong life in postmenopausal women. Ann Intern Med 1992; 117: 1016–37
  • Hayashi T, Fukuto J M, Ignarro L J, Chaudhuri G. Basal release of nitric oxide from aortic rings is greater in female than in male rabbits: implications for atherosclerosis. Proc Natl Acad Sci USA 1992; 89: 11259–63
  • Gillian D M, Quyyumi A A, Cannon R O. Effects of physiological levels of estrogen on coronary vasomotor function in postmenopausal women. Circulation 1994; 89: 2545–51
  • Weiner C P, Lizasoain I, Baylis S A, Knowles R G, Charles I G, Moncada S. Induction of calcium-dependent nitric oxide synthases by sex hormones. Proc Natl Acad Sci USA 1994; 91: 5212–6
  • Shan J, Resnick L M, Liu Q-Y, Wu X-C, Barbagallo M, Pang P KT. Vascular effects of 17β-estradiol in male Sprague-Dawley rats. Am J Physiol 1994; 266: H967–73
  • Zhang F, Ram J L, Standley P R, Sowers J R. 17β- estradiol attenuates voltage-dependent Ca2+ currents in A7r5 vascular smooth muscle cell line. Am J Physiol 1994; 266: C975–80
  • Drexler H, Zelher A M, Wollschläger R, Meinertz T, Just H, Bonzel T. Flow dependent coronary artery dilation in humans. Circulation 1989; 80: 466–74
  • Martin W, White D G, Henderson A H. Endothelium-derived relaxing factor and atriopeptin II elevate cyclic GMP levels in pig aortic endothelial cells. Br J Pharmacol 1988; 93: 229–39
  • Mackie K, Lai Y, Nairn A C, Greengard P, Pitt B R, Lazo J S. Protein phosphorylation in cultured endothelial cells. J Cell Physiol 1986; 128: 367–74
  • MacMillan-Crow L A, Murphy-Ullrich J E, Lincoln T M. Identification and possible location of cGMP-dependent protein kinase in bovine aortic endothelial cells. Biochem Biophys Res Commun 1994; 201: 531–7
  • Kobayashi S, Kanaide H, Nakamura M. Cytosolic free calcium transients in cultured vascular smooth muscle cells: microflurometric measurements. Science 1985; 229: 533–6
  • Hassid A. Atriopeptin II decreases cytosolic free Ca2+ in cultured vascular smooth muscle cells. Am J Physiol 1986; 251: C681–6
  • Kai H, Kanaide H, Matsumoto T, Nakamura M. 8-bromoguanosine 3′:5′-cyclic monophosphate decreases intracellular free calcium concentrations in cultured vascular smooth muscle cells from the rat aorta. FEBS Lett 1987; 221: 284–8
  • Bolotina V M, Najibi S, Palacino J J, Pagano P J, Cohen R A. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 1994; 368: 850–3
  • Archer S L, Huang J MC, Hampl V, Nelson D P, Shultz P J, Weir E K. Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase. Proc Natl Acad Sci USA 1994; 91: 7583–7
  • Shah A M, Spurgeon H, Sollott S J, Talo A, Lakatta E G. 8-bromo cyclic GMP reduces the myofilament response to calcium in intact cardiac myocytes. Circ Res 1994; 74: 970–8
  • Méry P-F, Pavoine C, Belhassen L, Pecker F, Fischmeister R. Nitric oxide regulates cardiac Ca2+ current. J Biol Chem 1993; 268: 26286–95
  • Walter U. Physiological role of cGMP and cAMP-dependent protein kinase in the cardiovascular system. Rev Physiol Biochem Pharmacol 1989; 113: 41–88
  • Pawson T. Regulation of the Ras signalling pathway by protein-tyrosine kinases. Biochem Soc Trans 1994; 22: 455–60
  • Lee G, Gilman M. Dual modes of control of c-fos mRNA induction by intracellular calcium in T cells. Mol Cell Biol 1994; 14: 4579–87
  • Luton F, Buferne M, Davoust J, Schmitt-Verhulst A-M, Boyer C. Evidence for protein tyrosine kinase involvement in ligand-induced TCR/CD3 internalization and surface redistribution. J Immunol 1994; 153: 63–72
  • Juan M, Vinas O, Pino-Otin M R, et al. CD50 (intercellular adhesion molecule 3) stimulation induces calcium mobilization and tyrosine phosphorylation through p59fyn and p56lck in Jurkat T cell line. J Exp Med 1994; 179: 1747–56
  • Sanders M. Molecular and cellular concepts in atherosclerosis. Pharmacol Ther 1994; 61: 109–53
  • Wood K M, Cadogan M D, Ramshaw A L, Parums D V. The distribution of adhesion molecules in human atherosclerosis. Histopathology 1993; 22: 437–44
  • Rollins B J, Yoshimura T, Leonard E J, Pober J S. Cytokine-activated human endothelial cells synthetize and secrete a monocyte chemoattractant, MCP-1/JE. Am J Pathol 1990; 136: 1229–33
  • Satriano J A, Hora K, Shan Z, Stanley E R, Mori T, Schiondorff D. Regulation of monocyte chemoattractant protein-1 and macrophage colony-stimulating factor-1 by IFN-γ, tumor necrosis factor-α, IgG aggregates, and cAMP in mouse mesangial cells. J Immunol 1993; 150: 1971–8
  • Cushing S D, Berliner J A, Valente A J, et al. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci USA 1990; 87: 5134–8
  • Ylä-Herttuala S, Lipton B A, Rosenfeld M E, et al. Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions. Proc Natl Acad Sci USA 1991; 88: 5252–6
  • Förstermann U, Mügge A, Alheid U, Haverich A, Fröllch J C. Selective attenuation of endothelium-mediated vasodilation in atherosclerotic human coronary arteries. Circ Res 1988; 62: 185–90
  • Zeiher A, Fisslthaler B, Schray-Utz B, Busse R. Nitric oxide modulates the expression of monocyte chemoattractant protein 1 in cultured human endothelial cells. Circ Res 1995, (in press)
  • Pipili-Synetos E, Sakkoula E, Maragoudakis M E. Nitric oxide is involved in the regulation of angiogenesis. Br J Pharmacol 1993; 108: 855–7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.