77
Views
11
CrossRef citations to date
0
Altmetric
Original Article

Metabolic Responses of Extracellular Matrix in Tissue Repair

Pages 333-338 | Published online: 08 Jul 2009

References

  • Sun Y, Ratajska A, Zhou G, Weber K T. Angiotensin converting enzyme and myocardial fibrosis in the rat receiving angiotensin II or aldosterone. J Lab Clin Med 1993; 122: 395–403
  • Sun Y, Weber K T. Angiotensin II and aldosterone receptor binding in rat heart and kidney: response to chronic angiotensin II or aldosterone administration. J Lab Clin Med 1993; 122: 404–11
  • Sun Y, Weber K T. Nonendothelial ACE and myocardial fibrosis in rats receiving angiotensin II: inhibition by lisino-pril. Am J Hypertens 1993; 6: 4A, (Abstr)
  • Sun Y, Ratajska A, Weber K T. Bradykinin receptor and tissue ACE binding in myocardial fibrosis: response to chronic angiotensin II or aldosterone administration in rats. J Mol Cell Cardiol 1995; 27: 813–22
  • Sun Y, Diaz-Arias A A, Weber K T. Angiotensin-converting enzyme, bradykinin and angiotensin II receptor binding in rat skin, tendon and heart valves: an in vitro quantitative autoradiographic study. J Lab Clin Med 1994; 123: 372–7
  • Sun Y, Cleutjens J PM, Diaz-Arias A A, Weber K T. Cardiac angiotensin converting enzyme and myocardial fibrosis in the rat. Cardiovasc Res 1994; 28: 1423–32
  • Yamada H, Fabris B, Allen A M, Jackson B, Johnston C I, Mendelsohn F AO. Localization of angiotensin converting enzyme in rat heart. Circ Res 1991; 68: 141–9
  • Pinto J E, Viglione P, Saavedra J M. Autoradiographic localization and quantification of rat heart angiotensin converting enzyme. Am J Hypertens 1991; 4: 321–6
  • Bashey Rl, Torii S, Angrist A. Age-related collagen and elastin content of human heart valves. J Gerontol 1967; 22: 203–8
  • Katwa L C, Tyagi S C, Campbell S E, Lee S J, Cicila G T, Weber K T. Valvular interstitial cells express angiotensi-nogen, cathepsin D, and generate angiotensin peptides. Int J Biochem Cell Biol 1996; 28: 807–21
  • Filip D A, Radu A, Simionescu M. Interstitial cells of the heart valves possess characteristics similar to smooth muscle cells. Circ Res 1986; 59: 310–20
  • Katwa L C, Ratajska A, Cleutjens J PM, et al. Angiotensin converting enzyme and kininase-ll-like activities in cultured valvular interstitial cells of the rat heart. Cardiovasc Res 1995; 29: 57–64
  • Hara A, Fukuyama K, Epstein M L. Partial purification and characterization of angiotensin-converting enzyme in mouse and human skin. J Invest Dermatol 1982; 78: 503–7
  • Keeley F W, Elmoselhi A, Leenen F HH. Enalapril suppresses normal accumulation of elastin and collagen in cardiovascular tissues of growing rats. Am J Physiol 1992; 262: H1013–21
  • Albaladejo P, Bouaziz H, Duriez M, et al. Angiotensin converting enzyme inhibition prevents the increase in aortic collagen in rats. Hypertension 1994; 23: 74–82
  • Johnston C I, Mooser V, Sun Y, Fabris B. Changes in cardiac angiotensin converting enzyme after myocardial infarction and hypertrophy in rats. Clin Exp Pharmacol Physiol 1991; 18: 107–10
  • Fabris B, Jackson B, Kohzuki M, Perich R, Johnston C I. Increased cardiac angiotensin-converting enzyme in rats with chronic heart failure. Clin Exp Pharmacol Physiol 1990; 17: 309–14
  • Volders P GA, Willems I EMG, Cleutjens J PM, Arends J -W, Havenlth M G, Daemen M JAP. Interstitial collagen is increased in the non-infarcted human myocardium after myocardial infarction. J Mol Cell Cardiol 1993; 25: 1317–23
  • van Krimpen C, Schoemaker R G, Cleutjens J PM, et al. Angiotensin I converting enzyme inhibitors and cardiac remodeling. Basic Res Cardiol 1991; 86(Suppl 1)149–55
  • Sun Y, Ratajska A, Weber K T. Inhibition of angiotensin-converting enzyme and attenuation of myocardial fibrosis by lisinopril in rats receiving angiotensin II. J Lab Clin Med 1995; 126: 95–101
  • Cleutjens J PM, Verluyten M JA, Smits J FM, Daemen M JAP. Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol 1995; 147: 325–38
  • Sun Y, Ramires F JA, Weber K T. Fibrosis of atria and great vessels in response to angiotensin II or aldosterone infusion. Circulation 1996; 94: I-659, (Abstr)
  • Campbell S E, Janlcki J S, Weber K T. Temporal differences in fibroblast proliferation and phenotype expression in response to chronic administration of angiotensin II or aldosterone. J Mol Cell Cardiol 1995; 27: 1545–60
  • Campbell D J, Habener J F. Cellular localization of angio-tensinogen gene expression in brown adipose tissue and mesentery: quantification of messenger ribonucleic acid abundance using hybridization. in situ. Endocrinology 1987; 121: 1616–26
  • Cassis L A, Lynch K R, Peach M J. Localization of angio-tensinogen messenger RNA in rat aorta. Circ Res 1988; 62: 1259–62
  • Lindpaintner K, Lu W, Niedermajer J, et al. Selective activation of cardiac angiotensinogen gene expression in post-infarction ventricular remodeling in the rat. J Mol Cell Cardiol 1993; 25: 133–43
  • Katwa L C, Campbell S E, Tyagi S C, Lee S J, Cicila G T, Weber K T. Cultured myofibroblasts generate angiotensin peptides. de novo. J Mol Cell Cardiol 1997; 29: 1375–86
  • Yamagishi H, Kim S, Nishikimi T, Takeuchi K, Takeda T. Contribution of cardiac renin-angiotensin system to ventricular remodelling in myocardial-infarcted rats. J Mol Cell Cardiol 1993; 25: 1369–80
  • Hodsman G P, Kohzuki M, Howes L G, Sumithran E, Tsunoda K, Johnston C I. Neurohumoral responses to chronic myocardial infarction in rats. Circulation 1988; 78: 376–81
  • Hirsch A T, Talsness C E, Schunkert H, Paul M, Ozau V J. Tissue-specific activation of cardiac angiotensin converting enzyme in experimental heart failure. Circ Res 1991; 69: 475–82
  • Studer R, Reinecke H, Muller B, Holtz J, Just H, Drexler H. Increased angiotensin-l converting enzyme gene expression in the failing human heart. Quantification by competitive RNA polymerase chain reaction. J Clin Invest 1994; 94: 301–10
  • Hokimoto S, Yasue H, Fujimoto K, Sakata R, Miyamoto E. Increased angiotensin converting enzyme activity in left ventricular aneurysm of patients after myocardial infarction. Cardiovasc Res 1995; 29: 664–9
  • Ou R, Sun Y, Ganjam V K, Weber K T. In situ production of angiotensin II by fibrosed rat pericardium. J Mol Cell Cardiol 1996; 28: 1319–27
  • Nio Y, Matsubara H, Murasawa S, Kanasaki M, Inada M. Regulation of gene transcription of angiotensin II receptor subtypes in myocardial infarction. J Clin Invest 1995; 95: 46–54
  • Makino N, Hata T, Sugano M, Dixon I MC, Yanaga T. Regression of hypertrophy after myocardial infarction is produced by the chronic blockade of angiotensin type I receptor in rats. J Mol Cell Cardiol 1996; 28: 507–17
  • Sun Y, Weber K T. Angiotensin II receptor binding following myocardial infarction in the rat. Cardiovasc Res 1994; 28: 1623–8
  • Lefroy D C, Wharton J, Crake T, et al. Regional changes in angiotensin II receptor density after experimental myocardial infarction. J Mol Cell Cardiol 1996; 28: 429–40
  • Stauss H M, Zhu Y C, Redlich T, Unger T. Early and late treatment of infarction-induced heart failure with a converting enzyme inhibitor: bradykinin potentiation versus angiotensin II reduction. Hypertension 1993; 22: 429, Abstr
  • Frimm C C de, Sun Y, Weber K T. Angiotensin II receptor blockade and myocardial fibrosis of the infarcted rat heart. J Lab Clin Med 1997; 129: 439–46
  • Jugdutt Bl, Humen D P, Khan M I, Schwarz-Michorowski B L. Effect of left ventricular unloading with captopril on remodeling and function during healing of anterior transmural myocardial infarction in the dog. Can J Cardiol 1992; 8: 151–63
  • Jugdutt Bl, Khan Ml, Jugdutt S J, Blinston G E. Effect of enalapril on ventricular remodeling and function during healing after anterior myocardial infarction in the dog. Circulation 1995; 91: 802–12
  • Michel J -B, Lattion A -L, Salzmann J -L, et al. Hormonal and cardiac effects of converting enzyme inhibition in rat myocardial infarction. Circ Res 1988; 62: 641–50
  • Smits J FM, van Krimpen C, Schoemaker R G, Cleutjens J PM, Daemen M JAP. Angiotensin II receptor blockade after myocardial infarction in rats: effects on hemody namics, myocardial DNA synthesis, and interstitial collagen content. J Cardiovasc Pharmacol 1992; 20: 772–8
  • Pimentel J L, Jr, Sundell C L, Wang S, Kopp J B, Montero A, Martinez-Maldonado M. Role of angiotensin II in the expression and regulation of transforming growth factor-β in obstructive nephropathy. Kidney Int 1995; 48: 1233–46
  • Morrissey J J, Ishidoya S, McCracken R, Klahr S. The effect of ACE inhibitors on the expression of matrix genes and the role of p53 and p21 (WAF1) in experimental renal fibrosis. Kidney Int 1996; 49(Suppl 54)S83–7
  • Ishidoya S, Morrissey J, McCracken R, Reyes A, Klahr S. Angiotensin II receptor antagonist ameliorates renal tubulointerstitial fibrosis caused by unilateral ureteral obstruction. Kidney Int 1995; 47: 1285–94
  • Kaneto H, Morrissey J, McCracken R, Reyes A, Klahr S. Enalapril reduces collagen type IV synthesis and expansion of the interstitium in the obstructed rat kidney. Kidney Int 1994; 45: 1637–47
  • Pimentel J L, Jr, Martinez-Maldonado M, Wilcox J N, Wang S, Luo C. Regulation of renin-angiotensin system in unilateral ureteral obstruction. Kidney Int 1993; 44: 390–400
  • Ishidoya S, Morrissey J, McCracken R, Klahr S. Delayed treatment with enalapril halts tubulointerstitial fibrosis in rats with obstructive nephropathy. Kidney Int 1996; 49: 1110–9
  • Yanagisawa H, Morrissey J, Morrison A R, Klahr S. Eicosanoid production by isolated glomeruli of rats with unilateral ureteral obstruction. Kidney Int 1990; 37: 1528–35
  • Diamond J R, Anderson S. Irreversible tubulointerstitial damage associated with chronic aminonucleoside nephrosis. Am J Pathol 1990; 137: 1323–32
  • Lafayette R A, Mayer G, Meyer T W. The effects of blood pressure reduction on cyclosporine nephrotoxicity in the rat. J Am Soc Nephrol 1993; 3: 1892–9
  • Cohen E P, Moulder J E, Fish B L, Hill P. Prophylaxis of experimental bone marrow transplant nephropathy. J Lab Clin Med 1994; 124: 371–80
  • Tanaka R, Sugihara K, Tatematsu A, Fogo A. Inter-nephron heterogeneity of growth factors and sclerosis -modulation of platelet-derived growth factor by angiotensin II. Kidney Int 1995; 47: 131–9
  • Ikoma M, Kawamura T, Kakinuma Y, Fogo A, Ichikawa I. Cause of variable therapeutic efficiency of angiotensin converting enzyme inhibitor on glomerular lesions. Kidney Int 1991; 40: 195–202
  • Shibouta Y, Chatani F, Ishimura Y, et al. TCV-116 inhibits renal interstitial and glomerular injury in glomerulosclerotic rats. Kidney Int 1996; 49(Suppl 55)S115–8
  • Anderson S, Rennke H G, Brenner B M. Therapeutic advantage of converting enzyme inhibitors in arresting progressive renal disease associated with systemic hypertension in the rat. J Clin Invest 1986; 77: 1993–2000
  • Juncos L I, Carrasco Duenas S, Cornejo J C, Broglia C A, Cejas H. Long-term enalapril and hydrochlorothiazide in radiation nephritis. Nephron 1993; 64: 249–55
  • Nakamura T, Honma H, Ikeda Y, et al. Renal protective effects of angiotensin II receptor I antagonist CV-11974 in spontaneously hypertensive stroke-prone rats (SHR-sp). Blood Press 1994; 3(Suppl 5)61–6
  • Nakamura T, Obata J, Kuroyanagi R, et al. Involvement of angiotensin II in glomerulosclerosis of stroke-prone spontaneously hypertensive rats. Kidney Int 1996; 49(Suppl 55)S109–12
  • Kim S, Ohta K, Hamaguchl A, et al. Contribution of renal angiotensin II type I receptor to gene expressions in hypertension-induced renal injury. Kidney Int 1994; 46: 1346–58
  • Kim S, Ohta K, Hamaguchi A, et al. Angiotensin II type I receptor antagonist inhibits the gene expression of transforming growth factor-β1 and extracellular matrix in cardiac and vascular tissues of hypertensive rats. J Pharmacol Exp Ther 1995; 273: 509–15
  • Ward W F, Molteni A, Ts'ao C. Radiation-induced endothelial dysfunction and fibrosis in rat lung: modification by the angiotensin converting enzyme inhibitor CL242817. Radiat Res 1989; 117: 342–50
  • Ward W F, Molteni A, Ts'ao C, Kim Y T, Hinz J M. Radiation pneumotoxicity in rats: modification by inhibitors of angiotensin converting enzyme. Int J Radiat Oncol Biol Phys 1992; 22: 623–5
  • Ward W F, Molteni A, Ts'ao C -H, Hinz J M. Captopril reduces collagen and mast cell accumulation in irradiated rat lung. Int J Radiat Oncol Biol Phys 1990; 19: 1405–9
  • Molteni A, Ward W F, Ts'ao C, Soliday N H, Dunnes M. Monocrotaline-induced pulmonary fibrosis in rats: amelioration by captopril and penicillamine. Proc Soc Exp Biol Med 1985; 180: 112–20
  • Zhou G, Kandala J C, Tyagi S C, Katwa L C, Weber K T. Effects of angiotensin II and aldosterone on collagen gene expression and protein turnover in cardiac fibroblasts. Mol CellBiochem 1996; 154: 171–8
  • Villarreal F J, Kim N N, Ungab G D, Printz M P, Dillmann W H. Identification of functional angiotensin II receptors on rat cardiac fibroblasts. Circulation 1993; 88: 2849–61
  • Brilla C G, Zhou G, Matsubara L, Weber K T. Collagen metabolism in cultured adult rat cardiac fibroblasts: response to angiotensin II and aldosterone. J Mol Cell Cardiol 1994; 26: 809–20
  • Riches D WH. Macrophage involvement in wound repair, remodeling, and fibrosis. The Molecular and Cellular Biology of Wound Repair, 2nd edn., R AF Clark. Plenum Press, New York 1996; 95–141
  • Casscells W, Bazoberry F, Speir E, et al. Transforming growth factor-β1 in normal heart and in myocardial infarction. Ann NY Acad Sci 1990; 593: 148–60
  • Hanatani A, Yoshlyama M, Kim S, et al. Inhibition by angiotensin II type 1 receptor antagonist of cardiac pheno-typic modulation after myocardial infarction. J Mol Cell Cardiol 1995; 27: 1905–14
  • Lee A A, Dillmann W H, McCulloch A D, Villarreal F J. Angiotensin II stimulates the autocrine production of transforming growth factor-β1 in adult rat cardiac fibroblasts. J Mol Cell Cardiol 1995; 27: 2347–57
  • Desmouliere A, Gabbiani G. The role of the myofibroblast in wound healing and fibrocontractive diseases. The Molecular and Cellular Biology of Wound Repair, 2nd edn., R AF Clark. Plenum Press, New York 1996; 391–423
  • Peterson K E, Braley-Mullen H. Suppression of murine experimental autoimmune thyroiditis by oral administration of porcine thyroglobulin. Cell Immunol 1995; 166: 123–30
  • Friedman S L. The cellular basis of hepatic fibrosis. Mechanisms and treatment strategies. N Engl J Med 1993; 328: 1828–35
  • Zhang G, Moorhead P J, el Nahas A M. Myofibroblasts and the progression of experimental glomerulonephritis. Exp Nephrol 1995; 3: 308–18
  • Willems I EMG, Havenith M G, De Mey J GR, Daemen M JAP. The α-smooth muscle actin-positive cells in healing human myocardial scars. Am J Pathol 1994; 145: 868–75

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.