188
Views
18
CrossRef citations to date
0
Altmetric
Review Article

Proteases in cutaneous melanoma

, &
Pages 431-442 | Published online: 08 Jul 2009

References

  • Clark W H, Elder D E, Guerry D, Epstein M N, Greene M H, van Horn M. A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Hum Pathol 1984; 15: 1147–65
  • Herlyn M, Clark W H, Rodeck U, Mancianti M L, Jambrosic J, Koprowski H. Biology of tumor progression in human melanocytes. Lab Invest 1987; 56: 461–74
  • Albino A P, Reed J A, McNutt N S. Molecular biology of cutaneous malignant melanoma. Cancer. Principles & Practice of Oncology, 5th edn, V T DeVita, S Hellman, S A Rosenberg. Philadelphia, Lippincott-Raven 1997; 1935–46
  • Saksela O, Rifkin D B. Cell-associated plasminogen activation: regulation and physiological functions. Annu Rev Cell Biol 1988; 4: 93–126
  • MacDougall J R, Matrisian L M. Contributions of tumor and stromal matrix metalloproteinases to tumor progression, invasion and metastasis. Cancer Metastasis Rev 1995; 14: 351–62
  • Hewitt R, Dana K. Stromal cell expression of components of matrix-degrading protease systems in human cancer. Enzyme Protein 1996; 49: 163–73
  • Aznavoorian S, Murphy A N, Stetler-Stevenson W G, Liotta L A. Molecular aspects of tumor cell invasion and metastasis. Cancer 1993; 71: 1368–83
  • Heino J. Biology of tumor cell invasion: interplay of cell adhesion and matrix degradation. Int J Cancer 1996; 65: 717–22
  • Dana K, Andreasen P A, Grondahl-Hansen J, Kristensen P, Nielsen L S, Skriver L. Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res 1985; 44: 139–266
  • Tryggvason K, Höyhtyä M, Salo T. Proteolytic degradation of extracellular matrix in tumor invasion. Biochim Biophys Acta 1987; 907: 191–217
  • Pöllänen J, Stephens R W, Vaheri A. Directed plasminogen activation at the surface of normal and malignant cells. Adv Cancer Res 1991; 50: 273–328
  • Schmitt M, Jänicke F, Graeff H. Tumor-associated proteases. Fibrinolysis 1992; 6: 3–26
  • Mignatti P, Rifkin D B. Biology and biochemistry of proteinases in tumor invasion. Physiol Rev 1993; 73: 161–95
  • Monsky W L, Schold S C, Jr. Proteases and cell adhesion proteins in cancer. Semin Cancer Biol 1993; 4: 251–8
  • DeClerck Y A, Laug W E. Cooperation between matrix metalloproteinases and the plasminogen activator-plasmin system in tumor progression. Enzyme Protein 1996; 49: 72–84
  • de Vries T J, van Muijen G NP, Ruiter D J. The plasminogen activation system in tumour invasion and metastasis. Pathol Res Pract 1996; 192: 718–33
  • de Vries T J, van Muijen G NP, Ruiter D J. The plasminogen activation system in melanoma cell lines and in melanocytic lesions. Melanoma Res 1996; 6: 79–88
  • de Vries T J, Ruiter D J, Weidle U H, van Muijen G NP. Localization of the components of the plasminogen activation system in cutaneous melanocytic lesions - a minireview. Fibrinolysis 1996; 10(Suppl 2)91–4
  • Duffy M J. Proteases as prognostic markers in cancer. Clin Cancer Res 1996; 2: 613–8
  • Mueller B M. Different roles for plasminogen activators and metalloproteinases in melanoma metastasis. Curr Top Microbiol Immunol 1996; 213: 65–80
  • Andreasen P A, Kjoller L, Christensen L, Duffy M J. The urokinase-type plasminogen activator system in cancer metastasis: a review. lnt J Cancer 1997; 72: 1–22
  • Jones J L, Walker R A. Control of matrix metalloproteinase activity in cancer. J Pathol 1997; 183: 377–9
  • de Vries T J, Verheijen J H, de Bart A CW, Weidle U H, Ruiter D J, van Muijen G NP. Decreased expression of both the low density lipoprotein receptor-related protein/α24. Wei, Y Waltz, DA Rao, N Drummond, RJ Rosenberg, S Chapman, HAIdentification of the urokinase receptor as an adhesion receptor for vitronectin. J Biol Chem 1994; 269: 32380–8
  • Deng G, Curriden S A, Wang S, Rosenberg S, Loskutoff D J. Is plasminogen activator inhibitor-1 the molecular switch that governs urokinase receptor-mediated cell adhesion and release?. J Cell Biol 1996; 134: 1563–71
  • Stahl A, Mueller B M. Melanoma cell migration on vitro-nectin: regulation by components of the plasminogen activation system. Int J Cancer 1997; 71: 116–22
  • Nip J, Brodt P. The role of the integrin vitronectin receptor, α28. Nip, J Rabbani, SA Shibata, HR Brodt, P Coordinated expression of the vitronectin receptor and the urokinase-type plasminogen activator receptor in metastatic melanoma cells. J Clin Invest 1995; 95: 2096–103
  • Chapman H A. Plasminogen activators, integrins, and the coordinated regulation of cell adhesion and migration. Curr Opin Cell Biol 1997; 9: 714–24
  • Brooks P C, Stromblad S, Sanders L C, et al. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin α31. Busso, N Masur, SK Lazega, D Waxman, S Ossowski, L Induction of cell migration by pro-urokinase binding to its receptor: possible mechanism for signal transduction in human epithelial cells. J Cell Biol 1994; 126: 259–70
  • Blasi F. uPA, uPAR, PAI-1: key intersection of proteolytic, adhesive and chemotactic highways?. Immunol Today 1997; 18: 415–7
  • Bizik J, Lizonová A, Stephens R W, Grófová M, Vaheri A. Plasminogen activation by t-PA on the surface of human melanoma cells in the presence of α34. Bizik, J Stephens, RW Grófová, M Vaheri, A Binding of tissue-type plasminogen activator to human melanoma cells. J Cell Biochem 1993; 51: 326–35
  • Houde M, de Bruyne G, Bracke M, et al. Differential regulation of gelatinase B and tissue-type plasminogen activator expression in human Bowes melanoma cells. Int J Cancer 1993; 53: 395–100
  • Stahl A, Mueller B M. Binding of urokinase to its receptor promotes migration and invasion of human melanoma cells in vitro. Cancer Res 1994; 54: 3066–71
  • Stahl A, Mueller B M. The urokinase-type plasminogen activator receptor, a GPI-linked protein, is localized in caveolae. J Cell Biol 1995; 129: 335–44
  • Wei Y, Lukashev M, Simon D I, et al. Regulation of integrin function by the urokinase receptor. Science 1996; 273: 1551–5
  • Huijzer J C, Uhlenkott C E, Meadows G G. Differences in expression of metalloproteinases and plasminogen activators in murine melanocytes and B16 melanoma variants: lack of association with in vitro invasion. Int J Cancer 1995; 63: 92–9
  • Valente P, Fassina G, Melchiori A, et al. TIMP-2 over-expression reduces invasion and angiogenesis and protects B16F10 melanoma cells from apoptosis. Int J Cancer 1998; 75: 246–53
  • Montgomery A MP, Mueller B M, Reisfeld R A, Taylor S M, DeClerck Y A. Effect of tissue inhibitor of the matrix metalloproteinases-2 expression on the growth and spontaneous metastasis of a human melanoma cell line. Cancer Res 1994; 54: 5467–73
  • Seftor R EB, Seftor E A, Stetler-Stevenson W G, Hendrix M JC. The 72 kDa type IV collagenase is modulated via differential expression of α43. Luca, M Huang, S Gershenwald, JE Singh, RK Reich, R Bar-Eli, M Expression of interleukin-8 by human melanoma cells up-regulates MMP-2 activity and increases tumor growth and metastasis. Am J Pathol 1997; 151: 1105–13
  • Stack M S, Gray R D, Pizzo S V. Modulation of murine B16F10 melanoma plasminogen activator production by a synthetic peptide derived from the laminin A chain. Cancer Res 1993; 53: 1998–2004
  • Quax P HA, van Muijen G NP, Weening-Verhoeff E JD, et al. Metastatic behavior of human melanoma cell lines in nude mice correlates with urokinase-type plasminogen activator, its type-1 inhibitor, and urokinase-mediated matrix degradation. J Cell Biol 1991; 115: 191–9
  • Meissauer A, Kramer M D, Hofmann M, et al. Urokinase-type and tissue-type plasminogen activators are essential for in vitro invasion of human melanoma cells. Exp Cell Res 1991; 192: 453–9
  • Meissauer A, Kramer M D, Schirrmacher V, Brunner G. Generation of cell surface-bound plasmin by cell-associated urokinase-type or secreted tissue-type plasminogen activator: a key event in melanoma cell invasiveness in vitro. Exp Cell Res 1992; 199: 179–90
  • Montgomery A MP, De Clerck Y A, Langley K E, Reisfeld R A, Mueller B M. Melanoma-mediated dissolution of extracellular matrix: contribution of urokinase-dependent and metalloproteinase-dependent proteolytic pathways. Cancer Res 1993; 53: 693–700
  • Monsky W L, Lin C-Y, Aoyama A, et al. A potential marker protease of invasiveness, seprase, is localized on invadopodia of human malignant melanoma cells. Cancer Res 1994; 54: 5702–10
  • Hendrix M JC, Wood W R, Seftor E A, et al. Retinoic acid inhibition of human melanoma cell invasion through a reconstituted basement membrane and its relation to decreases in the expression of proteolytic enzymes and motility factor receptor. Cancer Res 1990; 50: 4121–30
  • Kirchheimer J C, Wojta J, Christ G, Binder B R. Functional inhibition of endogenously produced urokinase decreases cell proliferation in a human melanoma cell line. Proc Natl Acad Sci USA 1989; 86: 5424–8
  • Khokha R, Zimmer M J, Graham C H, Lala P K, Waterhouse P. Suppression of invasion by inducible expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) in B16-F10 melanoma cells. J Natl Cancer Inst 1992; 84: 1017–22
  • Ray J M, Stetler-Stevenson W G. Gelatinase A activity directly modulates melanoma cell adhesion and spreading. EMBO J 1995; 14: 908–17
  • Yu H, Schultz R M. Relationship between secreted urokinase plasminogen activator activity and metastatic potential in murine B16 cells transfected with human urokinase sense and antisense genes. Cancer Res 1990; 50: 7623–33
  • Alizadeh H, Ma D, Berman M, et al. Tissue-type plasminogen activator-induced invasion and metastasis of murine melanomas. Curr Eye Res 1995; 14: 449–58
  • Shapiro R L, Duquette J G, Roses D F, et al. Induction of primary cutaneous melanocytic neoplasms in urokinase-type plasminogen activator (uPA)-deficient and wild-type mice: cellular blue nevi invade but do not progress to malignant melanoma in uPA-deficient animals. Cancer Res 1996; 56: 3597–604
  • Hearing V J, Law L W, Corti A, Appella E, Blasi F. Modulation of metastatic potential by cell surface urokinase of murine melanoma cells. Cancer Res 1988; 48: 1270–8
  • Eitzman D T, Krauss J C, Shen T, Cui J, Ginsburg D. Lack of plasminogen activator inhibitor-1 effect in a transgenic mouse model of metastatic melanoma. Blood 1996; 87: 4718–22
  • Mueller B M, Yu Y B, Laug W E. Overexpression of plasminogen activator inhibitor 2 in human melanoma cells inhibits spontaneous metastasis in scid/scid mice. Proc Natl Acad Sci USA 1995; 92: 205–9
  • DeClerck Y A, Perez N, Shimada H, Boone T C, Langley K E, Taylor S M. Inhibition of invasion and metastasis in cells transfected with an inhibitor of metalloproteinases. Cancer Res 1992; 52: 701–8
  • Gartner M FRM, Fearns C, Wilson E L, Cambell J AH, Dowdle E B. Unusual growth characteristics of human melanoma xenografts in the nude mouse: a model for desmo-plasia, dormancy and progression. Br J Cancer 1992; 65: 487–90
  • Nemeth J A, Goolsby C L. TIMP-2, a growth-stimulatory protein from SV40-transformed human fibroblasts. Exp Cell Res 1993; 207: 376–82
  • Stetler-Stevenson W G, Bersch N, Golde D W. Tissue inhibitor of metalloproteinase-2 (TIMP-2) has erythroid-potentiating activity. FEBS Lett 1992; 296: 231–4
  • Foekens J A, Buessecker F, Peters H A, et al. Plasminogen activator inhibitor-2: prognostic relevance in 1012 patients with primary breast cancer. Cancer Res 1995; 55: 1423–7
  • Ganesh S, Sier C FM, Heerding M M, et al. Contribution of plasminogen activators and their inhibitors to the survival prognosis of patients with Dukes' stage B and C colorectal cancer. Br J Cancer 1997; 75: 1793–801
  • Fräki J E, Nieminen S, Hopsu-Havu V K. Proteolytic enzymes and plasminogen activator in melanoma. J Cutan Pathol 1979; 6: 195–200
  • Markus G, Kohga S, Camiolo S M, Madeja J M, Ambrus J L, Karakousis C. Plasminogen activators in human malignant melanoma. J Natl Cancer Inst 1984; 72: 1213–22
  • Kwaan H C, Radosevich J A, Xu C G, Lastre C. Tissue plasminogen activator and inhibitors of fibrinolysis in malignant melanoma. Tumor Biol 1988; 9: 301–6
  • Delbaldo C, Masouye I, Saurat J-H, Vassalli J-D, Sappino A-P. Plasminogen activation in melanocytic neoplasia. Cancer Res 1994; 54: 4547–52
  • de Vries T J, Quax P HA, Denijn M, et al. Plasminogen activators, their inhibitors, and urokinase receptor emerge in late stages of melanocytic tumor progression. Am J Pathol 1994; 144: 70–81
  • Woolley D E, Grafton C A. Collagenase immunolocalization studies of cutaneous secondary melanomas. Br J Cancer 1980; 42: 260–5
  • Väisänen A, Tuominen H, Kallioinen M, Turpeenniemi-Hujanen T. Matrix metalloproteinase-2 (72 kD type IV collagenase) expression occurs in the early stage of human melanocytic tumour progression and may have prognostic value. J Pathol 1996; 180: 283–9
  • van den Oord J J, Paemen L, Opdenakker G, De Wolf-Peeters C. Expression of gelatinase B and the extracellular matrix metalloproteinase inducer EMMPRIN in benign and malignant pigment cell lesions of the skin. Am J Pathol 1997; 151: 665–70
  • Wagner S N, Ruhri C, Kunth K, et al. Expression of stromelysin 3 in the stromal elements of human basal cell carcinoma. Diagn Mol Pathol 1992; 1: 200–5
  • Podhajcer O L, Bover L, Bravo Al, et al. Expression of cathepsin D in primary and metastatic human melanoma and dysplastic nevi. J Invest Dermatol 1995; 104: 340–4
  • Yoshii A, Kageshita T, Tsushima H, Ono T. Clinical relevance of cathepsin B-like enzyme activity and cysteine proteinase inhibitor in melanocytic tumours. Arch Dermatol Res 1995; 287: 209–13
  • Fröhlich E, Schaumburg-Lever G, Klessen C. Immunocytochemical and immunoelectron microscopic demonstration of cathepsin B in human malignant melanoma. Br J Dermatol 1995; 132: 867–75
  • Kageshita T, Yoshii A, Kimura T, et al. Biochemical and immunohistochemical analysis of cathepsins B, H, L and D in human melanocytic tumours. Arch Dermatol Res 1995; 287: 266–72
  • Min H Y, Doyle L V, Vitt C R, et al. Urokinase receptor antagonists inhibit angiogenesis and primary tumor growth in syngeneic mice. Cancer Res 1996; 56: 2428–33
  • Chirivi R GS, Garofalo A, Crimmin M J, et al. Inhibition of the metastatic spread and growth of B16-BL6 murine melanoma by a synthetic matrix metalloproteinase inhibitor. Int J Cancer 1994; 58: 460–4
  • Conway J G, Trexler S J, Wakefield J A, et al. Effect of matrix metalloproteinase inhibitors on tumor growth and spontaneous metastasis. Clin Exp Metastasis 1996; 14: 115–24
  • Oku T, Ata N, Yonezawa K, et al. Antimetastatic and antitumor effect of a recombinant human tissue inhibitor of metalloproteinases-2 in murine melanoma models. Biol Pharm Bull 1997; 20: 843–9
  • Kohn E C, Liotta L A. Molecular insights into cancer invasion: strategies for prevention and intervention. Cancer Res 1995; 55: 1856–62
  • Brown P D, Giavazzi R. Matrix metalloproteinase inhibition: a review of anti-tumour activity. Ann Oncol 1995; 6: 967–74
  • Wojtukiewicz M Z, Zacharski L R, Memoli V A, et al. Malignant melanoma. Interaction with coagulation and fibinolysis pathways in situ. Am J Clin Pathol 1990; 93: 516–21
  • Kos J, Štabuc B, Schweiger A, et al. Cathepsins B, H, and L and their inhibitors stefin A and cystatin C in sera of melanoma patients. Clin Cancer Res 1997; 3: 1815–22

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.