Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 38, 2009 - Issue 8
403
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Differences in Intraepithelial Lymphocytes in the Proximal, Middle, Distal Parts of Small Intestine, Cecum, and Colon of Mice

Pages 780-796 | Published online: 28 Oct 2009

REFERENCES

  • Beagley, K.W., Fujihashi, K., Lagoo, A.S., Lagoo-Deenadaylan, S., Black, C.A., Murray, A.M., Sharmanov, A.T., Yamamoto, M., McGhee, J.R., Elson, C.O., Kiyono, H. (1995). Differences in intraepithelial lymphocytes T cell subsets isolated from murine small versus large intestine. J. Immunol. 154:5611–5619.
  • Boismenu, R., Havran, W.L. (1994). Modulation of epithelial cell growth by intraepithelial γδ T cells. Science 266:1253–1255.
  • Boll, G., Rudolphi, A., Spieß, S., Reimann, J. (1995). Regional specialization of intraepithelial T cells in the murine small and large intestine. Scand. J. Immunol. 41:103–113.
  • Camerini, V., Panwala, C., Kronenberg, M. (1993). Regional specialization of the mucosal immune system. Intraepithelial lymphocytes of the large intestine have a different phenotype and function than those of the small intestine. J. Immunol. 151:1765–1776.
  • Chen, Y., Chou, K., Fuchs, E., Havran, W.L., Boismenu, R. (2002). Protection of the intestinal mucosa by intraepithelial γδ T cells. Proc. Natl. Acad. Sci. USA. 99:14338–14343.
  • Cuff, C.F., Cebra, C.K., Rubin, D.H., Cebra, J.J. (1993). Developmental relationship between cytotoxic α/β T cell receptor-positive intraepithelial lymphocytes and Peyer's patch lymphocytes. Eur. J. Immunol. 23:1333–1339.
  • Culshaw, R.J., Bancroft, G.J., McDonald, V. (1997). Gut intraepithelial lymphocytes induce immunity against Cryptosporidium infection through a mechanism involving gamma interferon production. Infect. Immun. 65:3074–3079.
  • Finamore, A., Roselli, M., Britti, S., Monastra, G., Ambra, R., Turrini, A., Mengheri, E. (2008). Intestinal and peripheral immune response to MON810 maize ingestion in weaning and old mice. J. Agric. Food Chem. 56:11533–11539.
  • Fujihashi, K., Taguchi, T., McGhee, J.R., Eldridge, J.H., Bruce, M.G., Green, D.R., Singh, B., Kiyono, H. (1990). Regulatory function for murine intraepithelial lymphocytes two subsets of CD3+, T cell receptor-1+ intraepithelial lymphocyte T cells abrogate oral tolerance. J. Immunol. 145:2010–2019.
  • Fujihashi, K., Yamamoto, M., McGhee, J.R., Beagley, K.W., Kiyono, H. (1993). Function of αβTCR+ intestinal intraepithelial lymphocytes: Th1- and Th2-type cytokine production by CD4+CD8- and CD4+CD8+ T cells for helper activity. Int. Immunol. 5:1473–1481.
  • Goodman, T., Lefrançois, L. (1988). Expression of the γ-δ T-cell receptor on intestinal CD8+ intraepithelial lymphocytes. Nature 333:855–858.
  • Guy-Grand, D., Azogui, O., Celli, S., Darche, S., Nussenzweig, M. C., Kourilsky, P., Vassalli, P. (2003). Extrathymic T cell lymphopoiesis: Ontogeny and contribution to gut intraepithelial lymphocyte in athymic and euthymic mice. J. Exp. Med. 197:333–341.
  • Guy-Grand, D., Malassis-Seris, M., Briottet, C., Vassalli, P. (1991). Cytotoxic differentiation of mouse gut thymodependent and independent intraepithelial T lymphocytes is induced locally. Correlation between functional assays, presence of perforin and granzyme transcripts, and cytoplasmic granules. J. Exp. Med. 173:1549–1552.
  • Guy-Grand, D., Rocha, B., Mintz, P., Malassis-Seris, M., Selz, F., Malissen, B., Vassalli, P. (1994). Different use of T cell receptor transducing modules in two populations of gut intraepithelial lymphocytes are related to distinct pathways of T cell differentiation. J. Exp. Med. 180:673–679.
  • Hummel, K.P., Richardson, F.L., Fekete, E. (1975). Anatomy. In: Green E.L. ( Ed.), Biology of the laboratory mouse (second edition). Dover Publications Inc., pp.247–307.
  • Ishikawa, H., Naito, T., Iwanaga, T., Takahashi-Iwanaga, H., Suematu, M., Hibi, T., Nanno, M. (2007). Curriculum vitae of intestinal intraepithelial T cells: their development and behavioral characteristics. Immunol. Rev. 215:154–165.
  • Ishimoto, Y., Tomiyama-Miyaji, C., Watanabe, H., Yokoyama, H., Ebe, K., Tsubata, S., Aoyagi, Y., Abo T. (2004). Age-dependent variation in the proportion and number of intestinal lymphocyte subsets, especially natural killer T cells, double-positive CD4+ CD8+ cells and B220+ T cells, in mice. Immunology 113:371–377.
  • Ke, Y., Pearce, K., Lake, J.P., Ziegler, H.K., Kapp, J.A. (1997). Gamma delta T lymphocytes regulate the induction and maintenance of oral tolerance. J. Immunol. 158:3610–3618.
  • Kronenberg, M., Cheroutre, H. (2005). Development, Function, and Specificity of Intestinal Intraepithelial Lymphocytes. In: Mestecky, J., Lamm, M.E., Strober, W., Bienenstock, J., McGhee, J.R., Mayer, L. ( Eds.), Mucosal Immunology vol. 1 (third edition). Elsevier Academic Press, pp. 565–581.
  • Kuo, S., El Guindy, A., Panwala, C.M., Hagan, P.M., Camerini, V. (2001). Differential appearance of T cell subsets in the large and small intestine of neonatal mice. Pediatr. Res. 49:543–551.
  • Lambolez, F., Kronenberg, M., Cheroutre, H. (2007). Thymic differentiation of TCRαβ+ CD8αα+ IELs. Immunol. Rev. 215:178–188.
  • Page, S.T., Bogatzki, L.Y., Hamerman, J.A., Sweenie, C.H., Hogarth, P.J., Malissen, M., Perlmutter, R.M., Pullen, A.M. (1998). Intestinal intraepithelial lymphocytes include precursors committed to the T cell receptor αβ lineage. Proc. Natl. Acad. Sci. USA 95:9459–9464.
  • Poussier, P., Ning, T., Banerjee, D., Julius, M. (2002). A unique subset of self-specific intraintestinal T cells maintains gut integrity. J. Exp. Med. 195:1491–1497.
  • Reséndiz-Albor, A.A., Esquivel, R., López-Revilla, R., Verdín, L., Moreno-Fierros, L. (2005). Striking phenotypic and functional differences in lamina propria lymphocytes from the large and small intestine of mice. Life Sci. 76:2783–2803.
  • Roberts, S.J., Smith, A.L., West, A.B., Wen, L., Findly, R.C., Owen, M.J., Hayday, A.C. (1996). T-cell αβ+ and γδ+ deficient mice display abnormal but distinct phenotypes toward a natural, widespread infection of the intestinal epithelium. Proc. Natl. Acad. Sci. USA 93:11774–11779.
  • Rocha, B., Vassalli, P., Guy-Grand, D. (1991). The Vβ repertoire of mouse gut homodimeric a CD8+ intraepithelial T cell receptor α/β+ lymphocytes reveals a major extrathymic pathway of T cell differentiation. J. Exp. Med. 173:483–486.
  • Rocha, B., Vassalli, P., Guy-Grand, D. (1994). Thymic and extrathymic origins of gut intraepithelial lymphocyte populations in mice. J. Exp. Med. 180:681–686.
  • Sasahara, T., Tamauchi, H., Ikewaki, N., Kubota, K. (1994). Unique properties of a cytotoxic CD4+CD8+ intraepithelial T-cell line established from the mouse intestinal epithelium. Microbiol. Immunol. 38:191–199.
  • Suzuki, H., Jeong, K.I., Doi, K. (2001a). Regional variations in the distributions of small intestinal intraepithelial lymphocytes (IELs) in BALB/c +/+, nu/+ and nu/nu mice. Comp. Med. 51:127–133.
  • Suzuki, H., Jeong, K.I., Doi, K. (2001b). Regional variations in the distribution of small intestinal intraepithelial lymphocytes in alymphoplasia (aly/aly) mice and heterozygous (aly/+) mice. Immunol. Invest. 30:315–324.
  • Suzuki, H., Jeong, K.I., Doi, K. (2002a). Age-related changes in the regional variations in the number and subsets of intraepithelial lymphocytes in mouse small intestine. Dev. Comp. Immunol. 26:589–595.
  • Suzuki, H., Jeong, K.I., Itoh, K., Doi, K. (2002b). Regional variations in the distributions of small intestinal intraepithelial lymphocytes in germ-free and specific pathogen-free mice. Exp. Mol. Pathol. 72:230–235.
  • Suzuki, H., Jeong, K.I., Okutani, T., Doi, K. (2000a). Regional variations in the number and subsets of intraepithelial lymphocytes in the mouse small intestine. Comp. Med. 50:39–42.
  • Suzuki, H., Jeong, K.I., Okutani, T., Doi, K. (2000b). Regional variations in the distributions of small intestinal intraepithelial lymphocytes (IELs) in three inbred strains of mice. J. Vet. Med. Sci. 62:881–887.
  • Suzuki, H., Shibata, S., Okutani, T., Suzuki, M., Nakayama, M., Nishimura, T., Doi, K. (1999). Diurnal changes in intraepithelial lymphocytes (IELs) in the small intestine of mice. Exp. Anim. 48:115–118.
  • Suzuki, H., Yamamoto, S. (2006). Regional variations in the distributions of small intestinal intraepithelial lymphocytes (IELs) in outbred laboratory mice (Mus musculus domesticus) and the inbred strain of mice established from Japanese fancy mice (Mus musculus molossinus). Dev. Comp. Immunol. 30:523–529.
  • Sydora, B.C., Jamieson, B.D., Ahmed, R., Kronenberg, M. (1996). Intestinal intraepithelial lymphocytes respond to systemic lymphocytic choriomeningitis virus infection. Cell. Immunol. 167:161–169.
  • Taguchi, T., Aicher, W.K., Fujihashi, K., Yamamoto, M., McGhee, J.R., Bluestone, J.A., Kiyono, H. (1991). Novel function for intestinal intraepithelial lymphocytes. Murine CD3+, γ/δ TCR+ T cells produce IFN-g and IL-5. J. Immunol. 147:3736–3744.
  • Takeuchi, M., Miyazaki, H., Mirokawa, K., Yokokura, T., Yoshikai, Y. (1993). Age-related changes of T cell subsets in intestinal intraepithelial lymphocytes of mice. Eur. J. Immunol. 23:1409–1411.
  • Umesaki, Y., Setoyama, H., Matsumoto, S., Okada, Y. (1993). Expansion of αβ T-cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus. Immunology 79:32–37.
  • Yamagiwa, S., Sugahara, S., Shimizu, T., Iwanaga, T., Yoshida, Y., Honda, S., Watanabe, H., Suzuki, K., Asakura, H., Abo, T. (1998). The primary site of CD4−8−B220+ αβ T cells in lpr mice: The appendix in normal mice. J. Immunol. 160:2665–2674.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.