Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 38, 2009 - Issue 8
154
Views
1
CrossRef citations to date
0
Altmetric
Clinical Immunology

A Specific Signalling Signature Characterizes the Development of Naturally Occurring and Antigen-Specific Regulatory T Cells

, , , , &
Pages 851-867 | Published online: 28 Oct 2009

REFERENCES

  • Adler, H. S. and Steinbrink, K. (2008). MAP kinase p38 and its relation to T cell anergy and suppressor function of regulatory T cells. Cell Cycle 7(2):1–7.
  • Apostolou, I., Sarukhan, A., . (2002). Origin of regulatory T cells with known specificity for antigen. Nat Immunol 3(8):756–763.
  • Bluestone, J. A. and Tang, Q. (2005). How do CD4+CD25+ regulatory T cells control autoimmunity?. Curr Opin Immunol 17(6):638–642.
  • Buer, J., Lanoue, A., . (1998). Interleukin 10 secretion and impaired effector function of major histocompatibility complex class II-restricted T cells anergized in vivo. J Exp Med 187(2):177–183.
  • Cabarrocas, J., Cassan, C., . (2006). Foxp3+ CD25+ regulatory T cells specific for a neo-self-antigen develop at the double-positive thymic stage. Proc Natl Acad Sci USA 103(22):8453–8458.
  • Carson, B. D. and Ziegler, S. F. (2007). Impaired T cell receptor signaling in Foxp3+ CD4 T cells. Ann N Y Acad Sci 1103:167–178.
  • Carter, J. D., Calabrese, G. M., . (2005). Deficiency of the Src homology region 2 domain-containing phosphatase 1 (SHP-1) causes enrichment of CD4+CD25+ regulatory T cells. J Immunol 174(11):6627–6638.
  • Crellin, N. K., Garcia, R. V., . (2007). Altered activation of AKT is required for the suppressive function of human CD4+CD25+ T regulatory cells. Blood 109(5):2014–2022.
  • Crellin, N. K., Garcia, R. V., . (2007). Flow cytometry-based methods for studying signaling in human CD4+CD25+FOXP3+ T regulatory cells. J Immunol Methods 324(1–2):92–104.
  • Daniels, M. A., Teixeiro, E., . (2006). Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 444(7120):724–729.
  • Fontenot, J. D., Gavin, M. A., . (2003). Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4(4):330–336.
  • Fontenot, J. D., Rasmussen, J. P., . (2005). A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 6(11):1142–1151.
  • Haxhinasto, S., Mathis, D., . (2008). The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J Exp Med 205(3):565–574.
  • Hori, S., Haury, M., . (2002). Specificity requirements for selection and effector functions of CD25+4+ regulatory T cells in anti-myelin basic protein T cell receptor transgenic mice. Proc Natl Acad Sci USA 99(12):8213–8218.
  • Hunter, S., Burton, E. A., . (1999). Fyn associates with Cbl and phosphorylates tyrosine 731 in Cbl, a binding site for phosphatidylinositol 3-kinase. J Biol Chem 274(4):2097–2106.
  • Kirberg, J., Baron, A., . (1994). Thymic selection of CD8+ single positive cells with a class II major histocompatibility complex-restricted receptor. J Exp Med 180(1):25–34.
  • Koonpaew, S., Shen, S., . (2006). LAT-mediated signaling in CD4+CD25+ regulatory T cell development. J Exp Med 203(1):119–129.
  • Lambolez, F., Jooss, K., . (2002). Tolerance induction to self antigens by peripheral dendritic cells. Eur J Immunol 32(9):2588–2597.
  • Lanoue, A., Bona, C., . (1997). Conditions that induce tolerance in mature CD4+ T cells. J Exp Med 185(3):405–414.
  • Larkin, J., 3rd, Rankin, A. L., . (2008). CD4+CD25+ regulatory T cell repertoire formation shaped by differential presentation of peptides from a self-antigen. J Immunol 180(4):2149–2157.
  • Liston, A., Nutsch, K. M., . (2008). Differentiation of regulatory Foxp3+ T cells in the thymic cortex. Proc Natl Acad Sci USA 105(33):11903–11908.
  • Loeser, S. and Penninger, J. M. (2007). Regulation of peripheral T cell tolerance by the E3 ubiquitin ligase Cbl-b. Semin Immunol 19(3):206–214.
  • Naramura, M., Jang, I. K., . (2002). c-Cbl and Cbl-b regulate T cell responsiveness by promoting ligand-induced TCR down-modulation. Nat Immunol 3(12):1192–1199.
  • Sakaguchi, S., Sakaguchi, N., . (1995). Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155(3):1151–1164.
  • Salomon, B. and Bluestone, J. A. (2001). Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol 19:225–252.
  • Salomon, B., Lenschow, D. J., . (2000). B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12(4):431–440.
  • Shevach, E. M. (2001). Certified professionals: CD4(+)CD25(+) suppressor T cells. J Exp Med 193(11):F41–46.
  • Shevach, E. M., DiPaolo, R. A., . (2006). The lifestyle of naturally occurring CD4+ CD25+ Foxp3+ regulatory T cells. Immunol Rev 212:60–73.
  • Starr, T. K., Jameson, S. C., . (2003). Positive and negative selection of T cells. Annu Rev Immunol 21:139–176.
  • Thien, C. B., Blystad, F. D., . (2005). Loss of c-Cbl RING finger function results in high-intensity TCR signaling and thymic deletion. Embo J 24(21):3807–3819.
  • Thornton, T. M., Pedraza-Alva, G., . (2008). Phosphorylation by p38 MAPK as an alternative pathway for GSK3beta inactivation. Science 320(5876):667–670.
  • van Santen, H. M., Benoist, C., . (2004). Number of T reg cells that differentiate does not increase upon encounter of agonist ligand on thymic epithelial cells. J Exp Med 200(10):1221–1230.
  • Wan, Y. Y. and Flavell, R. A. (2006). The roles for cytokines in the generation and maintenance of regulatory T cells. Immunol Rev 212:114–130.
  • Willoughby, J. E., Costello, P. S., . (2007). Raf signaling but not the ERK effector SAP-1 is required for regulatory T cell development. J Immunol 179(10):683–644.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.