Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 40, 2011 - Issue 5
151
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Characterization of Antigenic Determinants in ApxIIA Exotoxin Capable of Inducing Protective Immunity to Actinobacillus pleuropneumoniae Challenge

, , , , &
Pages 465-480 | Published online: 22 Mar 2011

REFERENCES

  • Anderson, C., Potter, A.A., Gerlach, G.F. (1991). Isolation and molecular characterization of spontaneously occurring cytolysin-negative mutants of Actinobacillus pleuropneumoniae serotype 7. Infect. Immun 59:4110–4116.
  • Beaudet, R., McSween, G., Boulay, G., Rousseau, P., Bisaillon, J.G., Descoteaux, J.P., Ruppanner, R. (1994). Protection of mice and swine against infection with Actinobacillus pleuropneumoniae by vaccination. Vet. Microbiol 39:71–81.
  • Bosse, J.T., Janson, H., Sheehan, B.J., Beddek, A.J., Rycroft, A.N., Kroll, J.S., Langford, P.R. (2002). Actinobacillus pleuropneumoniae: pathobiology and pathogenesis of infection. Microbes Infect 4:225–235.
  • Chiang, C.H., Huang, W.F., Huang, L.P., Lin, S.F., Yang, W.J. (2009). Immunogenicity and protective efficacy of ApxIA and ApxIIA DNA vaccine against Actinobacillus pleuropneumoniae lethal challenge in murine model. Vaccine 27:4565–4570.
  • Coghlan, A., Wolfe, K.H. (2000). Relationship of codon bias to mRNA concentration and protein length in Saccharomyces cerevisiae. Yeast 16:1131–1145.
  • Dubreuil, J.D., Jacques, M., Mittal, K.R., Gottschalk, M. (2000). Actinobacillus pleuropneumoniae surface polysaccharides: their role in diagnosis and immunogenicity. Anim. Health Res. Rev 1:73–93.
  • Duret, L., Mouchiroud, D. (1999). Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc. Natl. Acad. Sci. USA 96:4482–4487.
  • Frey, J. (1995). Virulence in Actinobacillus pleuropneumoniae and RTX toxins. Trends Microbiol 3:257–261.
  • Freytag, L.C., Clements, J.D. (2005). Mucosal adjuvants. Vaccine 23:1804–1813.
  • Fuller, T.E., Martin, S., Teel, J.F., Alaniz, G.R., Kennedy, M.J., Lowery, D.E. (2000). Identification of Actinobacillus pleuropneumoniae virulence genes using signature-tagged mutagenesis in a swine infection model. Microb. Pathog 29:39–51.
  • Galao, R.P., Scheller, N., Alves-Rodrigues, I., Breinig, T., Meyerhans, A., Diez, J. (2007). Saccharomyces cerevisiae: A versatile eukaryotic system in virology. Microb. Cell Fact 6:32.
  • Haesebrouck, F., Chiers, K., Van Overbeke, I., Ducatelle, R. (1997). Actinobacillus pleuropneumoniae infections in pigs: the role of virulence factors in pathogenesis and protection. Vet. Microbiol 58:239–249.
  • Harakuni, T., Sugawa, H., Komesu, A., Tadano, M., Arakawa, T. (2005). Heteropentameric cholera toxin B subunit chimeric molecules genetically fused to a vaccine antigen induce systemic and mucosal immune responses: a potential new strategy to target recombinant vaccine antigens to mucosal immune systems. Infect. Immun 73:5654–5665.
  • Hatfield, G.W., Roth, D.A. (2007). Optimizing scaleup yield for protein production: Computationally optimized DNA assembly (CODA) and translation engineering. Biotechnol. Annu. Rev 13:27–42.
  • Ingvarsson, P.K. (2007). Gene expression and protein length influence codon usage and rates of sequence evolution in Populus tremula. Mol. Biol. Evol 24:836–844.
  • Inzana, T.J., Mathison, B. (1987). Serotype specificity and immunogenicity of the capsular polymer of Haemophilus pleuropneumoniae serotype 5. Infect. Immun 55:1580–1587.
  • Jacques, M., Belanger, M., Roy, G., Foiry, B. (1991). Adherence of Actinobacillus pleuropneumoniae to porcine tracheal epithelial cells and frozen lung sections. Vet. Microbiol 27:133–143.
  • Jana, S., Deb, J.K. (2005). Strategies for efficient production of heterologous proteins in Escherichia coli. Appl Microbiol Biotechnol 67:289–298.
  • Jarma, E., Corradino, G., Regassa, L.B. (2004). Anaerobiosis, growth phase and Actinobacillus pleuropneumoniae RTX toxin production. Microb Pathog 37:29–33.
  • Jarma, E., Regassa, L.B. (2004). Growth phase mediated regulation of the Actinobacillus pleuropneumoniae ApxI and ApxII toxins. Microb Pathog 36:197–203.
  • Kim, J.M., Jung, D.I., Eom, Y.J., Park, S.M., Yoo, H.S., Jang, Y.S., Yang, M.S., Kim, D.H. (2010). Surface-displayed expression of a neutralizing epitope of ApxIIA exotoxin in Saccharomyces cerevisiae and oral administration of it for protective immune responses against challenge by Actinobacillus pleuropneumoniae. Biosci. Biotechnol. Biochem 74:1362–1367.
  • Kunkel, E.J., Butcher, E.C. (2003). Plasma-cell homing. Nat. Rev. Immunol 3:822–829.
  • Kurland, C.G. (1991). Codon bias and gene expression. FEBS Lett 285:165–169.
  • Lally, E.T., Hill, R.B., Kieba, I.R., Korostoff, J. (1999). The interaction between RTX toxins and target cells. Trends Microbiol 7:356–361.
  • Lee, K.Y., Kim, D.H., Kang, T.J., Kim, J., Chung, G.H., Yoo, H.S., Arntzen, C.J., Yang, M.S., Jang, Y.S. (2006). Induction of protective immune responses against the challenge of ctinobacillus pleuropneumoniae by the oral administration of transgenic tobacco plant expressing ApxIIA toxin from the bacteria. FEMS Immunol. Med. Microbiol 48:381–389.
  • Lemos, B., Bettencourt, B.R., Meiklejohn, C.D., Hartl, D.L. (2005). Evolution of proteins and gene expression levels are coupled in Drosophila and are independently associated with mRNA abundance, protein length, and number of protein-protein interactions. Mol. Biol. Evol 22:1345–1354.
  • Liljeqvist, S., Stahl, S., Andreoni, C., Binz, H., Uhlen, M., Murby, M. (1997). Fusions to the cholera toxin B subunit: influence on pentamerization and GM1 binding. J. Immunol. Meth 210:125–135.
  • Liu, J., Chen, X., Tan, C., Guo, Y., Chen, Y., Fu, S., Bei, W., Chen, H. (2009). In vivo induced RTX toxin ApxIVA is essential for the full virulence of Actinobacillus pleuropneumoniae. Vet. Microbiol 137:282–289.
  • Maier, E., Reinhard, N., Benz, R., Frey, J. (1996). Channel-forming activity and channel size of the RTX toxins ApxI, ApxII, and ApxIII of Actinobacillus pleuropneumoniae. Infect. Immun 64:4415–4423.
  • Makrides, S.C. (1996). Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev 60: 512–538.
  • Marais, G., Duret, L. (2001). Synonymous codon usage, accuracy of translation, and gene length in Caenorhabditis elegans. J. Mol. Evol 52:275–280.
  • Mason, H.S., Warzecha, H., Mor, T., Arntzen, C.J. (2002). Edible plant vaccines: applications for prophylactic and therapeutic molecular medicine. Trends Mol. Med 8:324–329.
  • Min, K., Chae, C. (1999). Serotype and apx genotype profiles of Actinobacillus pleuropneumoniae field isolates in Korea. Vet. Rec 145:251–254.
  • Moriyama, E.N., Powell, J.R. (1998). Gene length and codon usage bias in Drosophila melanogaster, Saccharomyces cerevisiae and Escherichia coli. Nucl. Acids Res 26:3188–3193.
  • Nochi, T., Takagi, H., Yuki, Y., Yang, L., Masumura, T., Mejima, M., Nakanishi, U., Matsumura, A., Uozumi, A., Hiroi, T., . (2007). Rice-based mucosal vaccine as a global strategy for cold-chain- and needle-free vaccination. Proc. Natl. Acad. Sci. USA 104:10986–10991.
  • Prideaux, C.T., Lenghaus, C., Krywult, J., Hodgson, A.L. (1999). Vaccination and protection of pigs against pleuropneumonia with a vaccine strain of Actinobacillus pleuropneumoniae produced by site-specific mutagenesis of the ApxII operon. Infect Immun 67:1962–1966.
  • Prideaux, C.T., Pierce, L., Krywult, J., Hodgson, A.L. (1998). Protection of mice against challenge with homologous and heterologous serovars of Actinobacillus pleuropneumoniae after live vaccination. Curr. Microbiol 37:324–332.
  • Ramjeet, M., Deslandes, V., Goure, J., Jacques, M. (2008). Actinobacillus pleuropneumoniae vaccines: from bacterins to new insights into vaccination strategies. Anim. Health Res. Rev 9:25–45.
  • Reimer, D., Frey, J., Jansen, R., Veit, H.P., Inzana, T.J. (1995). Molecular investigation of the role of ApxI and ApxII in the virulence of Actinobacillus pleuropneumoniae serotype 5. Microb. Pathog 18:197–209.
  • Rice, J., Ainley, W.M., Shewen, P. (2005). Plant-made vaccines: biotechnology and immunology in animal health. Anim. Health Res. Rev 6:199–209.
  • Rycroft, A.N., Cullen, J.M. (1990). Complement resistance in Actinobacillus (Haemophilus) pleuropneumoniae infection of swine. Am. J. Vet. Res 51:1449–1453.
  • Schaller, A., Kuhn, R., Kuhnert, P., Nicolet, J., Anderson, T.J., MacInnes, J.I., Segers, R.P., Frey, J. (1999). Characterization of apxIVA, a new RTX determinant of Actinobacillus pleuropneumoniae Microbiology 145 (Pt. 8):2105–2116.
  • Seah, J.N., Frey, J., Kwang, J. (2002). The N-terminal domain of RTX toxin ApxI of Actinobacillus pleuropneumoniae elicits protective immunity in mice. Infect. Immun 70:6464–6467.
  • Shin, S.J., Bae, J.L., Cho, Y.W., Lee, D.Y., Kim, D.H., Yang, M.S., Jang, Y.S., Yoo, H.S. (2005). Induction of antigen-specific immune responses by oral vaccination with Saccharomyces cerevisiae expressing Actinobacillus pleuropneumoniae ApxIIA. FEMS Immunol. Med. Microbiol 43:155–164.
  • Shin, S.J., Cho, Y.-W., Yoo, H.S. (2003). Cloning, sequencing and expression of apxIA, IIA, IIIA of Actinobacillus pleuropneumoniae isolated in Korea. Kor. J. Vet. Res 43:7.
  • Silin, D.S., Lyubomska, O.V., Jirathitikal, V., Bourinbaiar, A.S. (2007). Oral vaccination: where we are? Expert Opin. Drug Deliv 4:323–340.
  • Silva, A.J., Eko, F.O., Benitez, J.A. (2008). Exploiting cholera vaccines as a versatile antigen delivery platform. Biotechnol. Lett 30:571–579.
  • Simerska, P., Moyle, P.M., Olive, C., Toth, I. (2009). Oral vaccine delivery—New strategies and technologies. Curr. Drug Deliv 6:347–358.
  • Spangler, B.D. (1992). Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol. Rev 56:622–647.
  • Streatfield, S.J. (2006). Mucosal immunization using recombinant plant-based oral vaccines. Methods 38:150–157.
  • Streatfield, S.J., Howard, J.A. (2003). Plant-based vaccines. Int. J. Parasitol 33:479–493.
  • Tascon, R.I., Vazquez-Boland, J.A., Gutierrez-Martin, C.B., Rodriguez-Barbosa, I., Rodriguez-Ferri, E.F. (1994). The RTX haemolysins ApxI and ApxII are major virulence factors of the swine pathogen Actinobacillus pleuropneumoniae: evidence from mutational analysis. Mol. Microbiol 14:207–216.
  • Thwaits, R.N., Kadis, S. (1993). Purification of surface-exposed integral outer membrane proteins of Actinobacillus pleuropneumoniae and their role in opsonophagocytosis. Am. J. Vet. Res 54:1462–1470.
  • Warringer, J., Blomberg, A. (2006). Evolutionary constraints on yeast protein size. BMC Evol. Biol 6:61.
  • Welch, R.A., Bauer, M.E., Kent, A.D., Leeds, J.A., Moayeri, M., Regassa, L.B., Swenson, D.L. (1995). Battling against host phagocytes: the wherefore of the RTX family of toxins? Infect. Agents Dis 4:254–272.
  • Yin, J., Li, G., Ren, X., Herrler, G. (2007). Select what you need: a comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes. J. Biotechnol 127: 335–347.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.