Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 41, 2012 - Issue 6-7
621
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Phenotypic Plasticity of MDSC in Cancers

Pages 711-721 | Published online: 27 Sep 2012

REFERENCES

  • Bronte, V., Apolloni, E., Cabrelle, A., Ronca, R., Serafini, P., Zamboni, P., Restifo, N.P., Zanovello, P. (2000). Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood 96(12):3838–3846.
  • Bunt SK, Clements VK, Hanson EM, Sinha P, Ostrand-Rosenberg S. (2009). Inflammation enhances myeloid-derived suppressor cell cross-talk by signaling through Toll-like receptor 4. J. Leukoc. Biol. 85(6):996–1004.
  • Daud, A.I., Mirza, N., Lenox, B., Andrews, S., Urbas, P., Gao, G.X., Lee, J.H., Sondak, V.K., Riker, A.I., Deconti, R.C., Gabrilovich, D. (2008). Phenotypic and functional analysis of dendritic cells and clinical outcome in patients with high-risk melanoma treated with adjuvant granulocyte macrophage colony-stimulating factor. J. Clin. Oncol. 26(19):3235–3241.
  • Delahaye, N.F., Rusakiewicz, S., Martins, I., Ménard, C., Roux, S., Lyonnet, L., Paul, P., Sarabi, M., Chaput, N., Semeraro, M., Minard-Colin, V., Poirier-Colame, V., Chaba, K., Flament, C., Baud, V., Authier, H., Kerdine-Römer, S., Pallardy, M., Cremer, I., Peaudecerf, L., Rocha, B., Valteau-Couanet, D., Gutierrez, J.C., Nunès, J.A., Commo, F., Bonvalot, S., Ibrahim, N., Terrier, P., Opolon, P., Bottino, C., Moretta, A., Tavernier, J., Rihet, P., Coindre, J.M., Blay, J.Y., Isambert, N., Emile, J.F., Vivier, E., Lecesne, A., Kroemer, G., Zitvogel, L. (2011). Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors. Nat. Med. 17:700–707.
  • Diaz-Montero, C.M., Salem, M.L., Nishimura, M.I., Garrett-Mayer, E., Cole, D.J., Montero, A.J. (2009). Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol. Immunother. 58(1):49–59.
  • Dolcetti, L., Peranzoni, E., Ugel, S., Marigo, I., Fernandez Gomez, A., Mesa, C., Geilich, M., Winkels, G., Traggiai, E., Casati, A., Grassi, F., Bronte, V. (2009). Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM–CSF. Immunol. 40 (1):22–35.
  • Elkabets, M., Ribeiro, V.S., Dinarello, C.A., Ostrand-Rosenberg, S., Di Santo, J.P., Apte, R.N., Vosshenrich CA. (2010). IL-1β regulates a novel myeloid-derived suppressor cell subset that impairs NK cell development and function. Eur. J. Immunol. 40(12):3347–3357.
  • Filipazzi, P., Huber, V., Rivoltini, L. (2012). Phenotype, function and clinical implications of myeloid-derived suppressor cells in cancer patients. Cancer Immunol. Immunother. 61(2):255–263.
  • Filipazzi, P., Valenti, R., Huber, V., Pilla, L., Canese, P., Iero, M., Castelli, C., Mariani, L., Parmiani, G., Rivoltini, L. (2007). Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J. Clin. Oncol. 25(18):2546–2553.
  • Giermasz, A.S., Urban, J.A., Nakamura, Y., Watchmaker, P., Cumberland, R.L., Gooding, W., Kalinski P. (2009). Type-1 polarized dendritic cells primed for high IL-12 production show enhanced activity as cancer vaccines. Cancer Immunol. Immunother. 58(8):1329–1336.
  • Hillen, F., Baeten, C.I., van de Winkel, A., Creytens, D., van der Schaft, D.W., Winnepenninckx, V., Griffioen, A.W. (2008). Leukocyte infiltration and tumor cell plasticity are parameters of aggressiveness in primary cutaneous melanoma. Cancer Immunol. Immunother. 57(1):97–106.
  • Hoechst, B., Voigtlaender, T., Ormandy, L., Gamrekelashvili, J., Zhao, F., Wedemeyer, H., Lehner, F., Manns, M.P., Greten, T.F., Korangy, F. (2009). Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology. 50(3):799–807.
  • Kalinski, P., Mailliard, R.B., Giermasz, A., Zeh, H.J., Basse, P., Bartlett, D.L., Kirkwood, J.M., Lotze, M.T., Herberman, R.B. (2005). Natural killer-dendritic cell cross-talk in cancer immunotherapy. Expert Opin. Biol. Ther. 5(10):1303–1315.
  • Kerkar, S.P., Goldszmid, R.S., Muranski, P., Chinnasamy, D., Yu, Z., Reger, R.N., Leonardi, A.J., Morgan, R.A., Wang, E., Marincola, F.M., Trinchieri, G., Rosenberg, S.A., Restifo, N.P. (2011). IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors. J. Clin. Invest. 121(12):4746–4757.
  • Kimpfler, S., Sevko, A., Ring, S., Falk, C., Osen, W., Frank, K., Kato, M., Mahnke, K., Schadendorf, D., Umansky, V. (2009). Skin melanoma development in ret transgenic mice despite the depletion of CD25+Foxp3+ regulatory T cells in lymphoid organs. J. Immunol. 183(10):6330–6337.
  • Kmieciak, M., Basu, D., Payne, K.K., Toor, A., Yacoub, A., Wang, X.Y., Smith, L., Bear, H.D., Manjili, M.H. (2011). Activated NKT cells and NK cells render T cells resistant to myeloid-derived suppressor cells and result in an effective adoptive cellular therapy against breast cancer in the FVBN202 transgenic mouse. J. Immunol. 187(2):708–717.
  • Kmieciak, M., Morales, J.K., Morales, J., Bolesta, E., Grimes, M., Manjili, M.H. (2008). Danger signals and nonself entity of tumor antigen are both required for eliciting effective immune responses against HER-2/neu positive mammary carcinoma: implications for vaccine design. Cancer Immunol. Immunother. 57(9):1391–1398.
  • Ko, H.J., Lee, J.M., Kim, Y.J., Kim, Y.S., Lee, K.A., Kang, C.Y. (2009). Immunosuppressive myeloid-derived suppressor cells can be converted into immunogenic APCs with the help of activated NKT cells: an alternative cell-based antitumor vaccine. J. Immunol. 182(4):1818–1828.
  • Ko, J.S., Zea, A.H., Rini, B.I., Ireland, J.L., Elson, P., Cohen, P., Golshayan, A., Rayman, P.A., Wood, L., Garcia, J., Dreicer, R., Bukowski, R., Finke, J.H. (2009). Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin. Cancer Res. 15(6):2148–2157.
  • Kusmartsev, S., Su, Z., Heiser, A., Dannull, J., Eruslanov, E., Kübler, H., Yancey, D., Dahm, P., Vieweg, J. (2008). Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clin Cancer Res 14(24):8270–8278
  • Lechner, M.G., Megiel, C., Russell, S.M., Bingham, B., Arger, N., Woo, T., Epstein, A.L. (2011) Functional characterization of human Cd33+ and Cd11b+ myeloid-derived suppressor cell subsets induced from peripheral blood mononuclear cells co-cultured with a diverse set of human tumor cell lines. J. Transl. Med. 9:90.
  • Lee, J.M., Seo, J.H., Kim, Y.J., Kim, Y.S., Ko, H.J., Kang, C.Y. (2011) The restoration of myeloid-derived suppressor cells as functional antigen-presenting cells by NKT cell help and all-trans-retinoic acid treatment. Int. J. Cancer. doi: 10.1002/ijc.26411.
  • Li, H., Han, Y., Guo, Q., Zhang, M., Cao, X. (2009). Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J. Immunol. 182(1):240–249.
  • Liu, C.Y., Wang, Y.M., Wang, C.L., Feng, P.H., Ko, H.W., Liu, Y.H., Wu, Y.C., Chu, Y., Chung, F.T., Kuo, C.H., Lee, K.Y., Lin, S.M., Lin, H.C., Wang, C.H., Yu, C.T., Kuo, H.P. (2010). Population alterations of L-arginase- and inducible nitric oxide synthase-expressed CD11b+/CD14−/CD15+/CD33+ myeloid-derived suppressor cells and CD8 + T lymphocytes in patients with advanced-stage non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 136(1):35–45.
  • Mamessier, E., Sylvain, A., Bertucci, F., Castellano, R., Finetti, P., Houvenaeghel, G., Charaffe-Jaufret, E., Birnbaum, D., Moretta, A., Olive, D. (2011). Human breast tumor cells induce self-tolerance mechanisms to avoid NKG2D-mediated and DNAM-mediated NK cell recognition. Cancer Res. 71(21):6621–6632.
  • Mamessier, E., Sylvain, A., Thibult, M.L., Houvenaeghel, G., Jacquemier, J., Castellano, R., Gonçalves, A., André, P., Romagné, F., Thibault, G., Viens, P., Birnbaum, D., Bertucci, F., Moretta, A., Olive, D. (2011). Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J. Clin. Invest. 121:3609–3622.
  • Mandruzzato, S., Solito, S., Falisi, E., Francescato, S., Chiarion-Sileni, V., Mocellin, S., Zanon, A., Rossi, C.R., Nitti, D., Bronte, V., Zanovello, P. (2009). IL4Ralpha+ myeloid-derived suppressor cell expansion in cancer patients. J. Immunol. 182(10):6562–6568.
  • Mantovani, A. (2010). Molecular pathways linking inflammation and cancer. Curr. Mol. Med. 10: 369–373.
  • Marigo, I., Bosio, E., Solito, S., Mesa, C., Fernandez, A., Dolcetti, L., Ugel, S., Sonda, N., Bicciato, S., Falisi, E., Calabrese, F., Basso, G., Zanovello, P., Cozzi, E., Mandruzzato, S., Bronte, V. (2010). Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity 32(6):790–802.
  • Meyer, C., Sevko, A., Ramacher, M., Bazhin, A.V., Falk, C.S., Osen, W., Borrello, I., Kato, M., Schadendorf, D., Baniyash, M., Umansky, V. (2011). Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model. Proc, Natl. Acad, Sci. USA 108(41):17111–17116.
  • Mirza, N., Fishman, M., Fricke, I., Dunn, M., Neuger, A.M., Frost, T.J., Lush, R.M., Antonia, S., Gabrilovich, D.I. (2006). All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res. 66(18):9299–9307.
  • Morales, J.K., Kmieciak, M., Knutson, K.L., Bear, H.D., Manjili, M.H. (2010). GM-CSF is one of the main breast tumor-derived soluble factors involved in the differentiation of CD11b-Gr1- bone marrow progenitor cells into myeloid-derived suppressor cells. Breast Cancer Res. Treat. 123(1):39–49.
  • Movahedi, K., Guilliams, M., Van den Bossche, J., Van den Bergh, R., Gysemans, C., Beschin, A., De Baetselier, P., Van Ginderachter, J.A. (2008). Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111:4233–4244.
  • Nagaraj, S., Schrum, A.G., Cho, H.I., Celis, E., Gabrilovich, D.I. (2010). Mechanism of T cell tolerance induced by myeloid-derived suppressor cells. J. Immunol. 184(6):3106–3116.
  • Nausch, N., Galani, I.E., Schlecker, E., Cerwenka, A. (2008). Mononuclear myeloid-derived “suppressor” cells express RAE-1 and activate natural killer cells. Blood 112: 4080–4089.
  • Peláez, B., Campillo, J.A., López-Asenjo, J.A., Subiza, J.L. (2001). Cyclophosphamide induces the development of early myeloid cells suppressing tumor cell growth by a nitric oxide-dependent mechanism. J. Immunol. 166: 6608–6615.
  • Rodriguez, P.C., Ernstoff, M.S., Hernandez, C., Atkins, M., Zabaleta, J., Sierra, R., Ochoa, A.C. (2009). Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res. 69(4):1553–1560.
  • Schmielau, J., Finn, O.J. (2001). Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res. 61(12):4756–4760.
  • Shirota, Y., Shirota, H., Klinman, D.M. (2012). Intratumoral injection of CpG oligonucleotides induces the differentiation and reduces the immunosuppressive activity of myeloid-derived suppressor cells. J. Immunol. 2012 Jan 9. [Epub ahead of print].
  • Srivastava, M.K., Bosch, J.J., Thompson, J.A., Ksander, B.R., Edelman, M.J., Ostrand-Rosenberg, S. (2008). Lung cancer patients’ CD4(+) T cells are activated in vitro by MHC II cell-based vaccines despite the presence of myeloid-derived suppressor cells. Cancer Immunol. Immunother. 57(10):1493–1504.
  • Steding, C.E., Wu, S.T., Zhang, Y., Jeng, M.H., Elzey, B.D., Kao, C. (2011). The role of interleukin-12 on modulating myeloid-derived suppressor cells, increasing overall survival and reducing metastasis. Immunology 133(2):221–238.
  • van Cruijsen, H., van der Veldt, A.A., Vroling, L., Oosterhoff, D., Broxterman, H.J., Scheper, R.J., Giaccone, G., Haanen, J.B., van den Eertwegh, A.J., Boven, E., Hoekman, K., de Gruijl, T.D. (2008). Sunitinib-induced myeloid lineage redistribution in renal cell cancer patients: CD1c+ dendritic cell frequency predicts progression-free survival. Clin. Cancer Res 14(18):5884–5892.
  • Vuk-Pavlović, S,, Bulur, P.A., Lin, Y., Qin, R., Szumlanski, C.L., Zhao, X., Dietz, A.B. (2010) Immunosuppressive CD14+HLA-DRlow/− monocytes in prostate cancer. Prostate 70(4):443–455.
  • Wright, S.E., Rewers-Felkins, K.A., Quinlin, I.S., Phillips, C.A., Townsend, M., Philip, R., Zorsky, P., Klug, P., Dai, L., Hussain, M., Thomas, A.A., Sundaramurthy, C. (2009). Tumor burden influences cytotoxic T cell development in metastatic breast cancer patient—a phase I/II study. Immunol. Invest. 38(8):820–838.
  • Wong, J.L., Mailliard, R.B., Moschos, S.J., Edington, H., Lotze, M.T., Kirkwood, J.M., Kalinski, P. (2011). Helper activity of natural killer cells during the dendritic cell-mediated induction of melanoma-specific cytotoxic T cells. J. Immunother. 34(3):270–278.
  • Youn, J.I., Gabrilovich, D.I. (2010). The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur. J. Immunol. 40(11):2969––2675.
  • Youn, J.I., Nagaraj, S., Collazo, M., Gabrilovich, D.I. (2008). Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J. Immunol. 181:5791–5802.
  • Zea, A.H., Rodriguez, P.C., Atkins, M.B., Hernandez, C., Signoretti, S., Zabaleta, J., McDermott, D., Quiceno, D., Youmans, A., O’Neill, A., Mier, J., Ochoa, A.C. (2005) Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res. 65(8):3044–3048.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.