Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 41, 2012 - Issue 6-7
639
Views
126
CrossRef citations to date
0
Altmetric
Research Article

Indoleamine 2,3-Dioxygenase and Dendritic Cell Tolerogenicity

&
Pages 738-764 | Published online: 27 Sep 2012

REFERENCES

  • Baban, B., Hansen, A. M., Chandler, P. R., Manlapat, A., Bingaman, A., Kahler, D. J., Munn, D. H., Mellor, A. L. (2005). A minor population of splenic dendritic cells expressing CD19 mediates IDO-dependent T cell suppression via type I IFN signaling following B7 ligation. Int. Immunol. 17:909–919.
  • Baban, B., Chandler, P. R., Sharma, M. D., Pihkala, J., Koni, P. A., Munn, D. H., Mellor, A. L. (2009). IDO activates regulatory T cells and block their conversion into Th17-like T cells. J. Immunol. 183(4):2475–2483.
  • Baban, B., Chandler, P. R., Johnson, B. A., III, Huang, L., Li, M., Sharpe, M. L., Francisco, L. M., Sharpe, A. H., Blazar, B. R., Munn, D. H., Mellor, A. L. (2011). Physiologic Control of IDO Competence in Splenic Dendritic Cells. J. Immunol. 187: 2329–2335.
  • Belladonna, M. L., Volpi, C., Bianchi, R., Vacca, C., Orabona, C., Pallotta, M. T., Boon, L., Gizzi, S., Fioretti, M. C., Grohmann, U., Puccetti, P. (2008). Cutting edge: Autocrine TGF-{beta} sustains default tolerogenesis by IDO-competent dendritic cells. J. Immunol. 181:5194–5198
  • Belladonna, M. L., Orabona, C., Grohmann, U., Puccetti, P. (2009). TGF-beta and kynurenine as the key to infectious tolerance. Trends Mol Med. 15(2):41–49.
  • Benson, J. M., Shepherd, D. M. (2011). Dietary ligands of the aryl hydrocarbon receptor induce anti-inflammatory and immunoregulatoy effect on murine dendritic cells. Toxicol. Sci. 124(2):327–338.
  • Boasso, A., Royle, C. M., Doumazos, S., Aquino, V. N., Biasin, M., Piacentini, L., Tavano, B., Fuchs, D., Mazzotta, F., Lo Caputo, S., Shearer, G. M., Clerici, M., Graham, D. R. (2011). Overactivation of plasamacytoid dendritic cells inhibits antiviral T-cell responses: a model for HIV immunopathogenesis. Blood 118(19):5152–5162.
  • Brenk, M., Scheler, M., Koch, S., Neumann, J., Takikawa, O., Hacker, G., Bieber, T., von Bubnoff, D. (2009). Tryptophan deprivation induces inhibitory receptors ILT3 and ILT4 on dendritic cells favoring the induction of human CD4+CD25+ Foxp3+ T regulatory cells. J. Immunol. 183(1):145–154.
  • Buckwalter, M. R., Albert, M. L. (2009). Orchestration of the immune response by dendritic cells. Curr. Biol. 19(9):355–361.
  • Chen, W. J. (2011). IDO: more than an enzyme. Nat. Immunol. 12(9): 809–811.
  • Choi, B. K., Kim, Y. H., Choi, J. H., Kim, C. H., Kim, K. S., Sung, Y. C., Lee, Y. M., Moffett, J. R., Kwon, B. S. (2011). Unified immune modulation by 4-1BB triggering leads to diverse effects on disease progression in vivo. Cytokine 55(3): 420–428.
  • Chung, D. J., Rossi, M., Romano, E., Ghith, J., Yuan, J., Munn, D. H., Young, J. W. (2009). Indoleamine 2,3-dioxygenase-expressing mature human monocyte-derived dendritic cells expand potent autologous regulatory T cells. Blood 114(3):555–563.
  • Coombes, J. L., Siddiqui, K. R., Arancibia-Carcamo, C. V., Hall, J., Sun, C. M., Belkaid, Y., Powrie, F. (2007). A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med. 204(8):1757–1764.
  • Daissormont, I. T., Christ, A., Temmerman, L., Sampedro Millares, S., Seijkens, T., Rousch, M., Poggi, M., Boon, L., van der Loos, C., Daemen, M., Lutgens E, Halvorsen B, Aukrush P, Janssen E, Biessen EA. (2011). Plasmacytoid dendritic cells protect against atheroslerosis by tuning T-cell proliferation and activity. Circ. Res. 109(12): 1387–1395.
  • den Haan, J. M. M., Lehar, S. M., Bevan, M. J. (2000). Cd8+ but not CD8- dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med. 192(12):1685–1696.
  • de Souze Sales, J., Lara, F. A., Amadeu, T. P., de Oliveira Fulco, T., da Costa Nery, J. A., Sampaio, E. P., Pinheiro, R. O., Sarno, E. N. (2011). The role of indoleamine 2, 3-dioxygenase in lepromatous leprosy immunosuppression. Clin. Exp. Immunol. 165(2):251–263.
  • Dong, C. (2008). TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat. Rev. Immunol. 8:337–348.
  • Egilmez, N. K., Kilinc, M. O., Gu, T., Conway, T. F. (2007). Controlled-release particulate cytokine adjuvants for cancer therapy. Endocr. Metab. Imm. Disord. Drug Targets 7(4):266–270.
  • Fallarino, F., Vacca, C., Orabona, C., Belladonna, M. L., Bianchi, R., Marshall, B., Keskin, D. B., Mellor, A. L., Fioretti, M. C., Grohmann, U., Puccetti, P. (2002). Functional expression of indoleamine 2,3-dioxygenase by murine CD8 alpha(+) dendritic cells. Int. Immunol. 14(1):65–68.
  • Fallarino, F., Grohmann, U., Hwang, K. W., Orabona, C., Vacca, C., Bianchi, R., Belladonna, M. L., Fioretti, M. C., Alegre, M. L., Puccetti, P. (2003). Modulation of tryptophan catabolism by regulatory T cells. Nat. Immunol. 4(12):1206–1212.
  • Fallarino, F., Grohmann, U., You, S., McGrath, B. C., Cavener, D. R., Vacca, C., Orabona, C., Bianchi, R., Belladonna, M. L., Volpi, C., Santamaria, P., Fioretti, M., Puccetti, P. (2006). The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell Receptor {zeta}-chain and induce a regulatory phenotype in naïve T cells. J. Immunol. 176:6752–6761.
  • Favre, D., Mold, J., Hunt, P. W., Kanwar, B., Loke, P., Seu, L., Barbour, J. D., Lowe, M. M., Jayawardene, A., Aweeka, F., Huang, Y., Douek, D. C., Brenchley, J. M., Martin, J. N., Hecht, F. M., Deeks, S. G., McCune, J. M. (2010). Tryptophan catabolism by indoleamine 2,3-dioxygenase 1 alters the balance of TH17 to regulatory T cells in HIV disease. Sci. Transl. Med. 2(32):32–36.
  • Flatekval, G. F., Sioud, M. (2009). Modulation of dendritic cell maturation and function with mono- and bifunctional small interfering RNAs targeting indoleamine 2,3-dioxygenase. Immunology 128:837–848.
  • Forouzandeh, F., Jalili, R. B., Germain, M., Duronio, V., Ghahary, A. (2008). Skin cells, but not T cells, are resistant to indoleamine 2,3-dioxygenase (IDO) expressed by allogenic fibroblasts. Wound Repair Regen. 16:379–387.
  • Fricke, I., Gabrilovich, D. I. (2006). Dendritic cells and tumor microenvironment: A dangerous liaison. Immunol. Investig. 35:459–483.
  • Frumento, G., Rotondo, R., Tonetti, M., Damonte, G., Benatti, U., Ferrara GB. (2002). Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J. Exp. Med. 196(4):459–468.
  • Granucci, F., Zanoni, I. (2009). The dendritic cell life cycle. Cell Cycle 8(23):3816–3821.
  • Grohmann, U., Orabona, C., Fallarino, F., Vacca, C., Calcinaro, F., Falorni, A., Candeloro, P., Belladonna, M. L., Bianchi, R., Fioretti, M. C., Puccetti, P. (2002). CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat. Immunol. 3(11):1097–1-101
  • Grohmann, U., Fallarino, F., Bianchi, R., Orabona, C., Vacca, C., Fioretti, M. C., Puccetti, P. (2003a). A defect in tryptophan catabolism impairs tolerance in nonobese diabetic mice. J. Exp. Med. 198(1):153–160.
  • Grohmann, U., Bianchi, R., Orabona, C., Fallarino, F., Vacca, C., Micheletti, A., Fioretti, M. C., Puccetti, P. (2003b). Functional plasticity of dendritic cell subsets as mediated by CD40 versus B7 activation. J. Immunol. 171:2581–2587.
  • Gu, T., Rowswell-Turner, R. B., Kilinc, M. O., Egilmez, N. K. (2010). Central role of IFNgamma-indoleamine 2,3-dioxygenase axis in regulation of interleukin-12-mediated antitumor immunity. Cancer Res. 70(1):129–138.
  • Habibi, D., Jalili, R. B., Forouzandeh, F., Ong, C. J., Ghahary, A. (2010). High expression of IMPACT protein promotes resistance to indoleamine 2,3-dioxygenase-induced cell death. J. Cell. Physiol. 225:196–205.
  • Harden, J. L., Gu, T., Kilinc, M. O., Rowswell-Turner, R. B., Virtuoso, L. P., Egilmez, N. K. (2011). Dichotomous effects of IFN-{gamma} on dendritic cell function determine the extent of IL-12-driven antitumor T cell immunity. J. Immunol. 187(1):126–132.
  • Heath, W. R., Carbone, F. R. (2009). Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nat. Immunol. 10(12):1237–1244.
  • Heller MC, Drew CP, Jackson KA, Griffey S, Watson JL. (2010). A potential role for indoleamine 2,3-dioxygenase (IDO) in Rhodococcus equi infection. Vet. Immunol. Immunopathol. 138(3):174–82
  • Hoshi, M., Saito, K., Hara, A., Taguchi, A., Ohtaki, H., Tanaka, R., Fujigaki, H., Osawa, Y., Takemura, M., Matsunami, H., Ito, H., Seishima, M. (2010).The absence of IDO up-regulates type I IFN production, resulting in suppression of viral replication in the retrovirus-infected mouse. J. Immunol. 185(6):3305–3312.
  • Hou, D., Muller, A. J., Sharma, M. D., DuHadaway, J., Banerjee, T., Johnson, M., Mellor, A. L., Prendergast, G. C., Munn, D. H. (2007). Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res. 67(2):792–801.
  • Huang, T. T., Yen, M. C., Lin, C. C., Weng, T. Y., Chen, Y. L., Lin, C. M., Lai, M. D. (2011). Skin delivery of short hairpin RNA of indoleamine 2,3-dioxygenase induces antitumor immunity against orthotopic and metastatic liver cancer. Cancer Sci. 102(12): 2214–2220.
  • Hwu P, Du MX, Lapointe R, Do M, Taylor MW, Young HA. (2000). Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J. Immunol. 164(7): 3596–3599.
  • Jasperson, L. K., Bucher, C., Panoskaltsis-Mortari, A., Mellor, A.L., Munn, D.H., Blazar, B.R. (2009). Inducing the tryptophan catabolic pathway, indoleamine 2,3-dioxygenase (IDO), for suppression of graft-versus-host disease (GVHD) lethality. Blood 114(24):5062–5070.
  • Johnson, B. A., III, Baban, B., Mellor, A. L. (2009). Targeting the immunoregulatory indoleamine 2,3-dioxygenase pathway in immunotherapy. Immunotherapy. 1(4):645–661.
  • Johnson, B. A., III, Kahler, D. J., Baban, B., Chandler, P. R., Kang, B., Shimoda, M., Koni, P. A., Pihkala, J., Vilagos, B., Busslinger, M., . (2010). B-lymphoid cells with attributes of dendritic cells regulate T cells via indolaemine 2,3-dioxygenase. Proc. Natl. Acad. Sci. USA 107:10644–10648.
  • Jurgens, B., Hainz, U., Fuchs, D., Felzmann, T., Heitger, A. (2009). Interferon-gamma-triggered indoleamine 2,3-dioxygenase competence in human monocyte-derived dendritic cells induces regulatory activity in allogenic T cells. Blood 114(15):3235–3243.
  • Kamath, A. T., Henri, S., Battye, F., Tough, D. F., Shortman, K. (2002). Developmental kinetics and lifespan of dendritic cells in mouse lymphoid organs. Blood 100(5):1734–1741.
  • Kammerer, U., Kruse, A., Barrientos, G., Arck, P. C., Blois, S.M. (2008). Role of dendritic cells in the regulation of maternal immune responses to the fetus during mammalian gestation. Immunol. Invest. 37:499–533.
  • Kilinc, M. O., Aulakh, K. S., Nair, R. E., Jones, S. A., Alard, P., Kosiewicz, M. M., Egilmez, N. K. (2006). Reversing tumor immune suppression with intratumoral IL-12: activationof tumor-associated T effector/memory cells, induction of T suppressor apoptosis, and infiltration of CD8+ T effects. J. Immunol. 177(10):6962–6973.
  • Kilinc, M. O., Rowswell-Turner, R. B., Gu, T., Virtuoso, L. P., Egilmez, N. K. (2009). Activated CD8+ T-effector/memory cells eliminate CD4+ CD25+ Foxp3+ T-suppressor cells from tumors via FasL mediated apoptosis. J. Immunol. 183(12): 7656–7660.
  • Kilinc, M. O., Gu, T., Harden, J. L., Virtuoso, L. P., Egilmez, N. K. (2009). Central role of tumor-associated CD8+ T-ceffector/memory cells in restoring systemic antitumor immunity. J. Immunol. 182(7):4217–4225.
  • Kuales, M. A., Wenzel, J., Schmid-Wendtner, M. H., Bieber, T., von Bubnoff, D. (2011). Myeloid CD11c+ S100+ dendritic cells express indoleamine 2,3-dioxygenase at the inflammatory border to invasive lower lip squamous cell carcinoma. Histol. Histopathol. 8: 997–1006.
  • Laskarin G, Kammerer U, Rukavina D, Thomson AW, Fernandez N, Blois SM. (2007). Antigen-presenting cells and materno-fetal tolerance: an emerging role for dendritic cells. Am. J. Reprod. Immunol. 68(3):255–267.
  • Lee, J. H., Chen, Y., Chan, J. L., Qian, Y. W., Goydos, J. S. (2011). Molecular analysis of melanoma-induced sentinel lymph node immune dysfunction. Cancer Immunol. Immunother. 60(5):685–692.
  • Li, W., Li, B., Fan, W., Geng, L., Li, X., Li, L., Huang, Z., Li, S. (2009). CTLA4Ig gene transfer alleviates abortion in mice by expanding CD4+CD25+ regulatory T cells and inducing indoleamine 2,3-dioxygenase. J. Reprod. Immunol. 80(1–2):1–11.
  • Lipscomb, M. W., Taylor, J. L., Goldbach, C. J., Watkins, S. C., Wesa, A. K., Storkus, W. J. (2010). DC expressing transgene Foxp3 are regulatory APC. Eur. J. Immunol. 40(2):480–493.
  • Liu, X., Shin, N., Koblish, H. K., Yang, G., Wang, Q., Wang, K., Leffet, L., Hansbury, M. J., Thomas, B., Rupar, M., Waeltz, P., Bowman, K. J., Polam, P., Sparks, R. B., Yue, E. W., Li, Y., Wynn, R., Fridman, J. S., Burn, T. C., Combs, A. P., Newton, R. C., Scherle, P. A. (2010). Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood 115(17): 3520–3530.
  • Lu, Y., Giver, C. R., Sharma, A., Li, J. M., Darlak, K. A., Owen, L. M., Roback, J. D., Galipeau, J., Wller, E. K. (2012). Interferon-gamma and indoleamine 2,3-dioxygenase signaling between donor dendritic cells and T cells regulates graft versus host and graft versus leukemia activity. Blood 119(4):1075–1085.
  • MacDonald, T. T., Monteleone, I., Fantini, M. C., Monteleone, G. (2011). Regulation of homeostasis and inflammation in the intestine. Gastroenterology 140(6):1768–1775.
  • Maldonado-Lopez, R., De Smedt, T., Michel, P., Godfroid, J., Pajak, B., Heirman, C., Thielemans, K., Leo, O., Urbain, J., Moser, M. (1999). CD8{alpha}+ and CD8{alpha}- subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J. Exp. Med. 189(3)587–592.
  • Manlapat, A. K., Kahler, D. J., Chandler, P. R., Munn, D. H., Mellor, A. L. (2007). Cell-autonomous contol of interferon type I expression by indoleamine 2,3-dioxygenase in regulatory CD19+ dendritic cells. Eur. J. Immunol. 37(4):1064–1071.
  • Matteoli, G., Mazzini, E., Iliev, I. D., Mileti, E., Fallarino, F., Puccetti, P., Chieppa, M., Rescigno, M. (2010). Gut CD103+ dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/ T effector cell balance and oral tolerance induction. Gut 56:595–604.
  • Mellor, A. L., Keskin, D. B., Johnson, T., Chandler, P., Munn, D. H. (2002). Cells expressing indoleamine 2,3-dioxygenase inhibit T cell responses. J. Immunol. 168:3771–3776.
  • Mellor, A. L., Chandler, P., Baban, B., Hansen, A. M., Marshall, B., Pihkala, J., Waldmann, H., Cobbold, S., Adams, E., Munn, D. H. (2004). Specific subsets of murine dendritic cells acquire potent T-cell regulatory functions following CTLA4-mediated induction of indoleamine 2,3-dioxygenase. Int. Immunol. 16(10):1391–1401.
  • Mellor, A. L., Baban, B., Chandler, P. R., Manlapat, A., Kahler, D. J., Munn, D. H. (2005). Cutting edge: CpG oligonucleotides induce splenic CD19+ dendritic cells to aquire potent indoleamine 2,3-dioxygenase-dependent T-cell regulatory functions via IFN type I signaling. J. Immunol. 175:5601–5605.
  • Mellor, A. L. (2005). Indoleamine 2,3-dioxygenase and regulation of T cell immunity. Biochem. Biophys. Res. Commun. 338(1):20–24.
  • Mezrich, J. D., Fechner, J. H., Zhang, X., Johnson, B. P., Burlingham, W. J., Bradfield, C. A. (2010). An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol. 185(6): 3190–3198.
  • Muller, A. J., Heseler, K., Schmidt, S. K., Spekker, K., Mackenzie, C. R., Daubener, W. (2009). The missing link between indoleamine 2,3-dioxygenase mediated antibacterial and immunoregulatory effects. J. Cell Mol. Med. 13(6):1125–1135.
  • Muller, A. J., Sharma, M. D., Chandler, P. R., DuHadaway, J. B., Everhart, M. E., Johnson, B. A., III, Kahler, D. J., Pihkala, J., Soler, A. P., Munn, D. H. (2008). Chronic inflammation that facilitates tumor progression creates local immune suppression by inducing indoleamine 2,3-dioxygenase. Proc. Net. Acad. Sci. USA 105(44):17073–17078.
  • Munn, D. H., Zhou, M., Attwood, J. T., Bondarev, I., Conway, S. J., Marshall, B., Brown, C., Mellor, A. L. (1998). Prevention of allogenic fetal rejection by tryptophan catabolism. Science 281(5380):1191–1193.
  • Munn, D. H., Sharma, M. D., Hou, D., Baban, B., Lee, J. R., Antonia, S. J., Messina, J. L., Chandler, P., Koni, P. A., Mellor, A. L. (2004). Expression of indoleamine 2,3-dioxygenase by Plasmacytoid dendritic cells in tumor-draining lymph nodes. J. Clin. Invest. 114(2):280–290.
  • Munn, D. H., Sharma, M. D., Baban, B., Harding, H. P., Zhang, Y., Ron, D., Mellor, A. L. (2005). GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22(5):633–642.
  • Munn, D. H. (2010). Lineage-specific transcription factors in unexpected places. Eur. J. Immunol. 40(2):315–317.
  • Nair, J. R., Carlson, L. M., Koorelle, C., Rozanski, C. H., Byrne, G. E., Bergsagel, P. L., Shaughnessy, J. P. Jr., Boise, L. H., Chana-Khan, A., Lee, K. P. (2011). CD28 expressed on malignant plasma cells induces a prosurvival and immunosuppressive microenvironment. J. Immunol. 187(3):1243–1253.
  • Nair, R. E., Kilinc, M. O., Jones, S. A., Egilmez, N. K. (2006). Chronic immune therapy induces a progressive increase in intratumoral T suppressor activity and a concurrent loss of tumor-specific CD8+ T-effects in her-2/neu transgenic mice bearing advanced spontaneous tumors. J. Immunol. 176(12):7325–7334.
  • Nguyen, N. T., Kimura, A., Nakahama, T., Chinen, I., Masuda, K., Nohara, K., Fujii-Kuriyama, Y., Kishimoto, T. (2010). Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc. Nat. Acad. Sci. USA 107(46):19961–19966.
  • Njau, F., Geffers, R., Thalmann, J., Haller, H., Wagner, A. D. (2009). Restriction of Chlamydia pneumoniae replication in human dendritic cell by activation of indoleamine 2,3-dioxygenase. Microbes Infect. 11(13):1002–1010.
  • Norian, L. A., Rodriquez, P. C., O’Mara, L. A., Zabaleta, J., Ochoa, A. C., Cella, M., Allen, P. M. (2009). Tumor-infiltrating regulatoy dendritic cells inhibit CD8+ T cell function via L-arginine metabolism. Cancer Res. 69(7):3086.
  • O’Sullivan, B. J., Pai, S., Street, S., An, X., MacDonald, K. P., Wong, M., Strutton, G., Gerondakis, S, Steptoe RJ, de St Groth BF, Hill GR, Thomas R. (2011). Immunotherapy with costimulatory dendritic cells to control autoimmune inflammation. J. Immunol. 187(8):4018–4030.
  • Ochiel, D. O., Ghosh, M., Fahey, J. V., Guyre, P. M., Wira, C. R. (2010). Human uterine epithelial cell secretions regulate dendritic cells differentiation and responses to TLR ligands. J. Leukoc. Biol. 88(3):435–444.
  • Onodera, T., Jang, M. H., Guo, Z., Yamasaki, M., Hirata, T., Bai, Z., Tsuji, N. M., Nagakubo, D., Yoshie, O., Sakaguchi, S., Takikawa, O., Miyasaka, M. (2009). Constitutive expression of IDO by dendritic cells of mesenteric lymph nodes: functional involvement of the CTLA-4/B7 and CCL22/CCR4 interactions. J. Immunol. 183(9): 5608–5614.
  • Orabona, C., Grohmann, U., Belladonna, M. L., Fallarino, F., Vacca, C., Bianchi, R., Bozza, S., Volpi, C., Salomon, B. L., Fioretti, M. C., Romani, L., Puccetti, P. (2004). CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86. Nat. Immunol. 5(11):1134–1142.
  • Ou, X., Cai, S., Liu, P., Zeng, J., He, Y., Wu, X., Du, J. (2008). Enhancement of dendritic cell-tumor fusion vaccine potency by indoleamine-pyrrole 2,3-dioxygenase inhibitor, 1-MT. J. Cancer. Res. Clin. Oncol. 134(5):525–533.
  • Pallotta, M. T., Orabona, C., Volpi, C., Vacca, C., Belladonna, M. L., Bianchi, R., Servillo, G., Brunacci, C., Calvitti, M., Bicciato, S., Mazza, E. M., Boon, L., Grassi, F., Fioretti, M. C., Fallarino, F., Puccetti, P., Grohmann U. (2011). Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nat. Immunol. 12(9):870–878.
  • Quintana, F. J., Murugaiyan, G., Farez, M. F., Mitsdoerffer, M., Tukpah, Burns, E. J., Weiner, H. L. (2010). An endogenous aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress experimental autoimmune encephalomyelitis. Proc. Nat. Acad. Sci. USA 107(48):20768–20773.
  • Reizis, B., Colonna, M., Trinchieri, G., Barat, F., Gilliet, M. (2011). Plasmacytoid dendritic cells: one-trick ponies or workhorses of the immune system? Nat. Rev. Immunol. 11:558–565.
  • Sharma, M. D., Hou, D. Y., Koni, P. A., Metz, R., Chandler, P., Mellor, A. L., He, Y., Munn, D. H. (2009). Indoleamine 2,3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes. Blood 113(24):6102–6111.
  • Simones, T., Shepherd, D. M. (2011). Consequences of AhR activation in steady-state dendritic cells. Toxicol. Sci. 119(2): 293–307.
  • Smith, A. J., Toledo, C. M., Wietgrefe, S. W., Duan, L., Schacker, T. W., Reilly, C. S., Haase, A. T. (2011).The immunosuppressive role of IL-32 in lymphatic tissue during HIV-1 infection. J. Immunol. 186(11): 6576–6584.
  • Soliman, H., Mediaville-Varela, M., Antonia, S. (2010). Indoleamine 2,3-Dioxygenase – Is It an Immun Suppressor? Cancer J. 16:354–359.
  • Steinman, R. M., Cohn, Z. A. (1973). Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med. 137(5):1142–1162.
  • Stockinger, B., Hirota, K., Duarte, J., Veldhoen, M. (2011). External influences on the immune system via activation of the aryl hydrocarbon receptor. Semin. Immunol. 23(2):99–105.
  • Sucher, R., Fischler, K., Oberhuber, R., Kronberger, I., Margreiter, C., Ollinger, R., Schneeberger, S., Fuchs, D., Werner, E. R., Watschinger, K., Zelger, B., Tellides, G., Pilat, N., Pratschke, J., Margreiter, R., Wekerle, T,. Brandacher, G. (2012). IDO and regulatory T cell support are critical for cytotoxic T lymphocyte-associated Ag-4 Ig-mediated long-term solid organ allograft survival. J. Immunol. 188(1):37–46.
  • Sun, C. M., Hall, J. A., Blank, R. B., Bouladoux, N., Oukka, M., Mora, J. R., Belkaid, Y. (2007). Small interstine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204(8):1775–1785.
  • Sun, Y., Chin, Y. E., Weisiger, E., Malter, C., Tawara, I., Toubai, T., Gatza, E., Mascagni, P., Dinarello, C. A., Reddy, P. (2009). Cutting edge: Negative regulation of dendritic cells through acetylation of the nonhistone protein STAT-3. J. Immunol. 182(10):5899–5903.
  • Terness, P., Bauer, T. M., Rose, L., Dufter, C., Watzlik, A., Simon, H., Opelz, G. (2002). Inhibition of Allogenic T Cell Proliferation by Indoleamine 2,3-Dioxygenase-expressing Dendritic Cells: Mediation of Suppression by Tryptophan Metabolites. J. Exp. Med. 196(4):447–457.
  • Tsampalas, M., Gridelet, V., Berndt, S., Foidart, J. M., Geenen, V., Perrier d’Hauterive, S. (2010). Human chorionic gonadotropin: a hormone with immunological and angiogenic properties. J. Reprod. Immunol. 85(1): 93–8
  • Veldhoen, M., Duarte, J. H. (2010). The aryl hydrocarbon receptor: fine-tuning the immune-response. Curr. Opin. Immunol. 22(6):747–752.
  • Wallet, M. A., Sen, P., Tisch, R. (2005). Immunoregulation of dendritic cells. Clin. Med. Res. 3(3):166–175.
  • Wan, H., Versnel, M. A., Leijten, L. M., van Helden-Meeuwsen, C. G., Fekkes, D., Leenen, P. J., Khan, N. A., Benner, R., Kiekens, R. C.(2008). Chorionic gonadotropin induces dendritic cells to express a tolerogenic phenotype. J. Leukoc. Biol. 83(4):894–901.
  • Watkins, S. K., Zhu, Z., Riboldi, E., Shafer-Weaver, K. A., Stagliano, K. E., Sklavos, M. M., Ambs, S., Yagita, H., Hurwitz, A. A. (2011). FOXO3 programs tumor-associated DCs to become tolerogenic in human and murine prostate cancer. J. Clin. Invest. 121(4):1361–1372.
  • Wobser, M., Voigt, H., Houben, R., Eggert, A. O., Freiwald, M., Kaemmerer, U., Kaempgen E, Schrama D, Becker JC. (2007). Dendritic cell based antitumor vaccination: impact of functional indoleamine 2,3-dioxygenase expression. Cancer Immunol. Immunother. 56(7): 1017–24
  • Yan, Y., Zhang, G. X., Gran, B., Fallarino, F., Yu, S., Li, H., Cullimore, M. L., Rostami, A., Xu, H. (2010). IDO up-regulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encepthalomyelitis. J. Immunol. 185(10): 5953–5961.
  • Yang, H. J., Yen, M. C., Lin, C. C., Lin, C. M., Chen, Y. L., Weng, T. Y., Huang, T. T., Wu, C. L., Lai, M. D. (2010). A combination of the metabolic enzyme inhibitor APO866 and the immune adjuvant L-1-methyl tryptophan induces additive antitumor activity. Exp. Biol. Med. Maywood). 235(7): 869–876.
  • Yen, M. C., Lin, C. C., Chen, Y. L., Huang, S. S., Yang, H. J., Chang, C. P., Lei, H. Y., Lai, M. D. (2009). A novel cancer therapy by skin delivery of indoleamine 2,3-dioxygenase siRNA. Clin. Cancer Res. 15(2):641–649.
  • Zhang, T., Fresney, S., Welty, E., Sangrampukar, N., Rybak, E., Zhou, H., Cheng, X. F., Feng, Q., Avon, C., Laaris, A., Whitters, M., Nagelin, A. M., O’Hara, R. M. Jr., Azimzadeh, A. M. (2011). Selective CD28 blockade attenuates acute and chronic rejection of murine cardiac allografts in a CTLA-4-dependent manner. Am. J. Transplant. 11(8):1599–1609.
  • Zhu, B. T. (2010). Development of selective immune tolerance towards the allogenic fetus during pregnancy: Role of tryptophan catabolites. Int. J. Mol. Med. 25:831–835.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.