Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 41, 2012 - Issue 6-7
1,024
Views
209
CrossRef citations to date
0
Altmetric
Research Article

Metabolism of L-Arginine by Myeloid-Derived Suppressor Cells in Cancer: Mechanisms of T cell suppression and Therapeutic Perspectives

, &
Pages 614-634 | Published online: 27 Sep 2012

REFERENCES

  • Albina, J. E., Caldwell, M. D., Henry, W. L., Jr., and Mills, C. D. (1989). Regulation of macrophage functions by L-arginine. J. Exp. Med. 169:1021–1029.
  • Almand, B., Clark, J. I., Nikitina, E., van Beynen, J., English, N. R., Knight, S. C., Carbone, D. P., and Gabrilovich, D. I. (2001). Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J. Immunol. 166:678–689.
  • Almand, B., Resser, J. R., Lindman, B., Nadaf, S., Clark, J. I., Kwon, E. D., Carbone, D. P., and Gabrilovich, D. I. (2000). Clinical significance of defective dendritic cell differentiation in cancer. Clin. Cancer Res. 6:1755–1766.
  • Barbul, A., Rettura, G., Levenson, S. M., and Seifter, E. (1977). Arginine: a thymotropic and wound-healing promoting agent. Surg. Forum. 28:101–103.
  • Bronstein-Sitton, N., Cohen-Daniel, L., Vaknin, I., Ezernitchi, A. V., Leshem, B., Halabi, A., Houri-Hadad, Y., Greenbaum, E., Zakay-Rones, Z., Shapira, L., and Baniyash, M. (2003). Sustained exposure to bacterial antigen induces interferon-gamma-dependent T cell receptor zeta down-regulation and impaired T cell function. Nat. Immunol. 4:957–964.
  • Bronte, V., Apolloni, E., Cabrelle, A., Ronca, R., Serafini, P., Zamboni, P., Restifo, N. P., and Zanovello, P. (2000). Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood 96:3838–3846.
  • Bronte, V., Serafini, P., De Santo, C., Marigo, I., Tosello, V., Mazzoni, A., Segal, D. M., Staib, C., Lowel, M., Sutter, G., Colombo, M. P., and Zanovello, P. (2003). IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J. Immunol. 170:270–278.
  • Bronte, V. and Zanovello, P. (2005). Regulation of immune responses by L-arginine metabolism. Nat. Rev. Immunol. 5:641–654.
  • Chang, C. I., Liao, J. C., and Kuo, L. (2001). Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity. Cancer Res. 61:1100–1106.
  • Cheng, P., Corzo, C. A., Luetteke, N., Yu, B., Nagaraj, S., Bui, M. M., Ortiz, M., Nacken, W., Sorg, C., Vogl, T., Roth, J., and Gabrilovich, D. I. (2008). Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J. Exp. Med. 205:2235–2249.
  • Chicoine, L. G., Paffett, M. L., Young, T. L., and Nelin, L. D. (2004). Arginase inhibition increases nitric oxide production in bovine pulmonary arterial endothelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 287:L60–L68.
  • Closs, E. I., Simon, A., Vekony, N., and Rotmann, A. (2004). Plasma membrane transporters for arginine. J. Nutr. 134:2752S–2759S.
  • Corsi, M. M., Maes, H. H., Wasserman, K., Fulgenzi, A., Gaja, G., and Ferrero, M. E. (1998). Protection by L-2-oxothiazolidine-4-carboxylic acid of hydrogen peroxide-induced CD3zeta and CD16zeta chain down-regulation in human peripheral blood lymphocytes and lymphokine-activated killer cells. Biochem. Pharmacol. 56:657–662.
  • Cullen, M. E., Yuen, A. H., Felkin, L. E., Smolenski, R. T., Hall, J. L., Grindle, S., Miller, L. W., Birks, E. J., Yacoub, M. H., and Barton, P. J. (2006). Myocardial expression of the arginine:glycine amidinotransferase gene is elevated in heart failure and normalized after recovery: potential implications for local creatine synthesis. Circulation 114:I16–I20.
  • De, Santo C., Serafini, P., Marigo, I., Dolcetti, L., Bolla, M., Del, Soldato P., Melani, C., Guiducci, C., Colombo, M. P., Iezzi, M., Musiani, P., Zanovello, P., and Bronte, V. (2005). Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc Natl Acad Sci USA 102:4185–4190.
  • Deignan, J. L., Livesay, J. C., Yoo, P. K., Goodman, S. I., O’Brien, W. E., Iyer, R. K., Cederbaum, S. D., and Grody, W. W. (2006). Ornithine deficiency in the arginase double knockout mouse. Mol. Genet. Metab. 89:87–96.
  • Dolcetti, L., Peranzoni, E., Ugel, S., Marigo, I., Fernandez, Gomez A., Mesa, C., Geilich, M., Winkels, G., Traggiai, E., Casati, A., Grassi, F., and Bronte, V. (2010). Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur. J. Immunol. 40:22–35.
  • Dong, H., Zhu, G., Tamada, K., and Chen, L. (1999). B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med. 5:1365–1369.
  • Finke, J. H., Zea, A. H., Stanley, J., Longo, D. L., Mizoguchi, H., Tubbs, R. R., Wiltrout, R. H., O’Shea, J. J., Kudoh, S., Klein, E., and Ochoa, A. C. (1993). Loss of T-cell receptor zeta chain and p56 lck in T-cells infiltrating human renal cell carcinoma. Cancer Res. 53:5613–5616.
  • Gabrilovich, D. (2004). Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat. Rev. Immunol. 4:941–952.
  • Gabrilovich, D., Ishida, T., Oyama, T., Ran, S., Kravtsov, V., Nadaf, S., and Carbone, D. P. (1998). Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92:4150–4166.
  • Gabrilovich, D. I. and Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9:162–174.
  • Gabrilovich, D. I., Velders, M. P., Sotomayor, E. M., and Kast, W. M. (2001). Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J. Immunol. 166:5398–5406.
  • Gallina, G., Dolcetti, L., Serafini, P., De, Santo C., Marigo, I., Colombo, M. P., Basso, G., Brombacher, F., Borrello, I., Zanovello, P., Bicciato, S., and Bronte, V. (2006). Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J. Clin. Invest. 116:2777–2790.
  • Gattinoni, L., Powell, D. J., Jr., Rosenberg, S. A., and Restifo, N. P. (2006). Adoptive immunotherapy for cancer: building on success. Nat. Rev. Immunol. 6:383–393.
  • Ghosh, P., Sica, A., Young, H. A., Ye, J., Franco, J. L., Wiltrout, R. H., Longo, D. L., Rice, N. R., and Komschlies, K. L. (1994). Alterations in NF kappa B/Rel family proteins in splenic T-cells from tumor-bearing mice and reversal following therapy. Cancer Res. 54:2969–2972.
  • Granot, Z., Henke, E., Comen, E. A., King, T. A., Norton, L., and Benezra, R. (2011). Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell. 20:300–314.
  • Greten, T. F., Manns, M. P., and Korangy, F. (2011). Myeloid derived suppressor cells in human diseases. Int. Immunopharmacol. 11:802–807.
  • Hellstrom, I., Sjogren, H. O., Warner, G., and Hellstrom, K. E. (1971). Blocking of cell-mediated tumor immunity by sera from patients with growing neoplasms. Int. J. Cancer 7:226–237.
  • Hellstrom, K. E., Hellstrom, I., and Nelson, K. (1983). Antigen-specific suppressor (“blocking”) factors in tumor immunity. Biomembranes 11:365–388.
  • Hesse, M., Modolell, M., La Flamme, A. C., Schito, M., Fuentes, J. M., Cheever, A. W., Pearce, E. J., and Wynn, T. A. (2001). Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. J. Immunol. 167:6533–6544.
  • Hibbs, J. B., Jr., Taintor, R. R., and Vavrin, Z. (1987). Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science 235:473–476.
  • Holda, J. H., Maier, T., and Claman, H. N. (1985). Murine graft-versus-host disease across minor barriers: immunosuppressive aspects of natural suppressor cells. Immunol Rev. 88:87–105.
  • Huang, B., Pan, P. Y., Li, Q., Sato, A. I., Levy, D. E., Bromberg, J., Divino, C. M., and Chen, S. H. (2006). Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 66:1123–1131.
  • Item, C. B., Stockler-Ipsiroglu, S., Stromberger, C., Muhl, A., Alessandri, M. G., Bianchi, M. C., Tosetti, M., Fornai, F., and Cioni, G. (2001). Arginine:glycine amidinotransferase deficiency: the third inborn error of creatine metabolism in humans. Am. J. Hum. Genet. 69:1127–1133.
  • Iyer, R. K., Yoo, P. K., Kern, R. M., Rozengurt, N., Tsoa, R., O’Brien, W. E., Yu, H., Grody, W. W., and Cederbaum, S. D. (2002). Mouse model for human arginase deficiency. Mol. Cell Biol. 22:4491–4498.
  • Iyo, A. H., Zhu, M. Y., Ordway, G. A., and Regunathan, S. (2006). Expression of arginine decarboxylase in brain regions and neuronal cells. J. Neurochem. 96:1042–1050.
  • Jacobsen, L. C., Theilgaard-Monch, K., Christensen, E. I., and Borregaard, N. (2007). Arginase 1 is expressed in myelocytes/metamyelocytes and localized in gelatinase granules of human neutrophils. Blood 109:3084–3087.
  • Kasic, T., Colombo, P., Soldani, C., Wang, C. M., Miranda, E., Roncalli, M., Bronte, V., and Viola, A. (2011). Modulation of human T-cell functions by reactive nitrogen species. Eur. J. Immunol. 41:1843–1849.
  • Kato, J. Y. (1997). Control of G1 progression by D-type cyclins: key event for cell proliferation. Leukemia. 11 Suppl 3:347–351.
  • Klausner, R. D., Lippincott-Schwartz, J., and Bonifacino, J. S. (1990). The T cell antigen receptor: insights into organelle biology. Annu. Rev. Cell Biol. 6:403–431.
  • Ko, J. S., Rayman, P., Ireland, J., Swaidani, S., Li, G., Bunting, K. D., Rini, B., Finke, J. H., and Cohen, P. A. (2010). Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained. Cancer Res. 70:3526–3536.
  • Kono, K., Ressing, M. E., Brandt, R. M., Melief, C. J., Potkul, R. K., Andersson, B., Petersson, M., Kast, W. M., and Kiessling, R. (1996a). Decreased expression of signal-transducing zeta chain in peripheral T cells and natural killer cells in patients with cervical cancer. Clin. Cancer Res. 2:1825–1828.
  • Kono, K., Salazar-Onfray, F., Petersson, M., Hansson, J., Masucci, G., Wasserman, K., Nakazawa, T., Anderson, P., and Kiessling, R. (1996b). Hydrogen peroxide secreted by tumor-derived macrophages down-modulates signal-transducing zeta molecules and inhibits tumor-specific T cell-and natural killer cell-mediated cytotoxicity. Eur. J. Immunol. 26:1308–1313.
  • Kropf, P., Baud, D., Marshall, S. E., Munder, M., Mosley, A., Fuentes, J. M., Bangham, C. R., Taylor, G. P., Herath, S., Choi, B. S., Soler, G., Teoh, T., Modolell, M., and Muller, I. (2007). Arginase activity mediates reversible T cell hyporesponsiveness in human pregnancy. Eur. J. Immunol. 37:935–945.
  • Kryczek, I., Wei, S., Zou, L., Zhu, G., Mottram, P., Xu, H., Chen, L., and Zou, W. (2006a). Cutting edge: induction of B7-H4 on APCs through IL-10: novel suppressive mode for regulatory T cells. J. Immunol. 177:40–44.
  • Kryczek, I., Zou, L., Rodriguez, P., Zhu, G., Wei, S., Mottram, P., Brumlik, M., Cheng, P., Curiel, T., Myers, L., Lackner, A., Alvarez, X., Ochoa, A., Chen, L., and Zou, W. (2006b). B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J. Exp. Med. 203:871–881.
  • Kusmartsev, S., Cheng, F., Yu, B., Nefedova, Y., Sotomayor, E., Lush, R., and Gabrilovich, D. (2003). All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res. 63:4441–4449.
  • Kusmartsev, S. and Gabrilovich, D. I. (2005). STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. J. Immunol. 174:4880–4891.
  • Kusmartsev, S., Nefedova, Y., Yoder, D., and Gabrilovich, D. I. (2004). Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J. Immunol. 172:989–999.
  • Kusmartsev, S., Su, Z., Heiser, A., Dannull, J., Eruslanov, E., Kubler, H., Yancey, D., Dahm, P., and Vieweg, J. (2008). Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clin. Cancer Res. 14:8270–8278.
  • Kuss, I., Saito, T., Johnson, J. T., and Whiteside, T. L. (1999). Clinical significance of decreased zeta chain expression in peripheral blood lymphocytes of patients with head and neck cancer. Clin. Cancer Res. 5:329–334.
  • Le, H. K., Graham, L., Cha, E., Morales, J. K., Manjili, M. H., and Bear, H. D. (2009). Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice. Int. Immunopharmacol. 9:900–909.
  • Lee, J., Ryu, H., Ferrante, R. J., Morris, S. M., Jr., and Ratan, R. R. (2003). Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox. Proc. Natl. Acad. Sci. USA 100:4843–4848.
  • Li, X., Liu, J., Park, J. K., Hamilton, T. A., Rayman, P., Klein, E., Edinger, M., Tubbs, R., Bukowski, R., and Finke, J. (1994). T cells from renal cell carcinoma patients exhibit an abnormal pattern of kappa B-specific DNA-binding activity: a preliminary report. Cancer Res. 54:5424–5429.
  • Lu, T., Ramakrishnan, R., Altiok, S., Youn, J. I., Cheng, P., Celis, E., Pisarev, V., Sherman, S., Sporn, M. B., and Gabrilovich, D. (2011). Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J. Clin. Invest. 121:4015–4029.
  • McHugh, R. S. and Shevach, E. M. (2002). Cutting edge: depletion of CD4+CD25+ regulatory T cells is necessary, but not sufficient, for induction of organ-specific autoimmune disease. J. Immunol. 168:5979–5983.
  • McHugh, R. S., Shevach, E. M., Margulies, D. H., and Natarajan, K. (2001). A T cell receptor transgenic model of severe, spontaneous organ-specific autoimmunity. Eur. J. Immunol. 31:2094–2103.
  • Miescher, S., Stoeck, M., Qiao, L., Barras, C., Barrelet, L., and von, Fliedner, V. (1988). Preferential clonogenic deficit of CD8-positive T-lymphocytes infiltrating human solid tumors. Cancer Res. 48:6992–6998.
  • Miescher, S., Whiteside, T. L., Carrel, S., and von, Fliedner, V. (1986). Functional properties of tumor-infiltrating and blood lymphocytes in patients with solid tumors: effects of tumor cells and their supernatants on proliferative responses of lymphocytes. J. Immunol. 136:1899–1907.
  • Mizoguchi, H., O’Shea, J. J., Longo, D. L., Loeffler, C. M., McVicar, D. W., and Ochoa, A. C. (1992). Alterations in signal transduction molecules in T lymphocytes from tumor-bearing mice. Science 258:1795–1798.
  • Morris, S. M., Jr. (2002). Regulation of enzymes of the urea cycle and arginine metabolism. Annu. Rev. Nutr. 22:87–105.
  • Munder, M., Eichmann, K., and Modolell, M. (1998). Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J. Immunol. 160:5347–5354.
  • Munder, M., Eichmann, K., Moran, J. M., Centeno, F., Soler, G., and Modolell, M. (1999). Th1/Th2-regulated expression of arginase isoforms in murine macrophages and dendritic cells. J. Immunol. 163:3771–3777.
  • Munder, M., Mollinedo, F., Calafat, J., Canchado, J., Gil-Lamaignere, C., Fuentes, J. M., Luckner, C., Doschko, G., Soler, G., Eichmann, K., Muller, F. M., Ho, A. D., Goerner, M., and Modolell, M. (2005). Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity. Blood 105:2549–2556.
  • Munder, M., Schneider, H., Luckner, C., Giese, T., Langhans, C. D., Fuentes, J. M., Kropf, P., Mueller, I., Kolb, A., Modolell, M., and Ho, A. D. (2006). Suppression of T-cell functions by human granulocyte arginase. Blood 108:1627–1634.
  • Mundy-Bosse, B. L., Lesinski, G. B., Jaime-Ramirez, A. C., Benninger, K., Khan, M., Kuppusamy, P., Guenterberg, K., Kondadasula, S. V., Chaudhury, A. R., La Perle, K. M., Kreiner, M., Young, G., Guttridge, D. C., and Carson, W. E., III. (2011). Myeloid-derived suppressor cell inhibition of the IFN response in tumor-bearing mice. Cancer Res. 71:5101–5110.
  • Nagaraj, S., Gupta, K., Pisarev, V., Kinarsky, L., Sherman, S., Kang, L., Herber, D. L., Schneck, J., and Gabrilovich, D. I. (2007). Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat. Med. 13:828–835.
  • Ohm, J. E. and Carbone, D. P. (2001). VEGF as a mediator of tumor-associated immunodeficiency. Immunol. Res. 23:263–272.
  • Otsuji, M., Kimura, Y., Aoe, T., Okamoto, Y., and Saito, T. (1996). Oxidative stress by tumor-derived macrophages suppresses the expression of CD3 zeta chain of T-cell receptor complex and antigen-specific T- cell responses. Proc. Natl. Acad. Sci. USA 93:13119–13124.
  • Oyama, T., Ran, S., Ishida, T., Nadaf, S., Kerr, L., Carbone, D. P., and Gabrilovich, D. I. (1998). Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J. Immunol. 160:1224–1232.
  • Pan, P. Y., Wang, G. X., Yin, B., Ozao, J., Ku, T., Divino, C. M., and Chen, S. H. (2008). Reversion of immune tolerance in advanced malignancy: modulation of myeloid derived suppressor cell development by blockade of SCF function. Blood 111:219–228.
  • Pekarek, L. A., Starr, B. A., Toledano, A. Y., and Schreiber, H. (1995). Inhibition of tumor growth by elimination of granulocytes. J. Exp. Med. 181:435–440.
  • Rabinovich, G. A., Gabrilovich, D., and Sotomayor, E. M. (2007). Immunosuppressive strategies that are mediated by tumor cells. Annu. Rev. Immunol. 25:267–296.
  • Rodgers, S., Rees, R. C., and Hancock, B. W. (1994). Changes in the phenotypic characteristics of eosinophils from patients receiving recombinant human interleukin-2 (rhIL-2) therapy. Br. J. Haematol. 86:746–753.
  • Rodriguez, P. C., Ernstoff, M. S., Hernandez, C., Atkins, M., Zabaleta, J., Sierra, R., and Ochoa, A. C. (2009). Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res. 69: 1553–1560.
  • Rodriguez, P. C., Hernandez, C. P., Morrow, K., Sierra, R., Zabaleta, J., Wyczechowska, D. D., and Ochoa, A. C. (2010). L-arginine deprivation regulates cyclin D3 mRNA stability in human T cells by controlling HuR expression. J. Immunol. 185:5198–5204.
  • Rodriguez, P. C., Hernandez, C. P., Quiceno, D., Dubinett, S. M., Zabaleta, J., Ochoa, J. B., Gilbert, J., and Ochoa, A. C. (2005). Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J. Exp. Med. 202:931–939.
  • Rodriguez, P. C., Quiceno, D. G., and Ochoa, A. C. (2007). L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109:1568–1573.
  • Rodriguez, P. C., Quiceno, D. G., Zabaleta, J., Ortiz, B., Zea, A. H., Piazuelo, M. B., Delgado, A., Correa, P., Brayer, J., Sotomayor, E. M., Antonia, S., Ochoa, J. B., and Ochoa, A. C. (2004). Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res. 64:5839–5849.
  • Rodriguez, P. C., Zea, A. H., DeSalvo, J., Culotta, K. S., Zabaleta, J., Quiceno, D. G., Ochoa, J. B., and Ochoa, A. C. (2003). L-arginine consumption by macrophages modulates the expression of CD3zeta chain in T lymphocytes. J. Immunol. 171:1232–1239.
  • Rotondo, R., Barisione, G., Mastracci, L., Grossi, F., Orengo, A. M., Costa, R., Truini, M., Fabbi, M., Ferrini, S., and Barbieri, O. (2009). IL-8 induces exocytosis of arginase 1 by neutrophil polymorphonuclears in nonsmall cell lung cancer. Int. J. Cancer 125:887–893.
  • Rutschman, R., Lang, R., Hesse, M., Ihle, J. N., Wynn, T. A., and Murray, P. J. (2001). Cutting edge: Stat6-dependent substrate depletion regulates nitric oxide production. J. Immunol. 166:2173–2177.
  • Santhanam, L., Lim, H. K., Lim, H. K., Miriel, V., Brown, T., Patel, M., Balanson, S., Ryoo, S., Anderson, M., Irani, K., Khanday, F., Di, Costanzo L., Nyhan, D., Hare, J. M., Christianson, D. W., Rivers, R., Shoukas, A., and Berkowitz, D. E. (2007). Inducible NO synthase dependent s-nitrosylation and activation of arginase1 contribute to age-related endothelial dysfunction. Circ. Res. 101:692–702.
  • Schmielau, J. and Finn, O. J. (2001). Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res. 61:4756–4760.
  • Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 3:721–732.
  • Serafini, P., Meckel, K., Kelso, M., Noonan, K., Califano, J., Koch, W., Dolcetti, L., Bronte, V., and Borrello, I. (2006). Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med. 203:2691–2702.
  • Seung, L. P., Rowley, D. A., Dubey, P., and Schreiber, H. (1995). Synergy between T-cell immunity and inhibition of paracrine stimulation causes tumor rejection. Proc Natl Acad Sci USA. 92:6254–6258.
  • Sharma, P., Wagner, K., Wolchok, J. D., and Allison, J. P. (2011). Novel cancer immunotherapy agents with survival benefit: recent successes and next steps. Nat Rev Cancer. 11:805–812.
  • Sica, A. and Bronte, V. (2007). Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest. 117:1155–1166.
  • Singh, R., Pervin, S., Karimi, A., Cederbaum, S., and Chaudhuri, G. (2000). Arginase activity in human breast cancer cell lines: N(omega)-hydroxy-L- arginine selectively inhibits cell proliferation and induces apoptosis in MDA-MB-468 cells. Cancer Res. 60:3305–3312.
  • Sinha, P., Clements, V. K., Fulton, A. M., and Ostrand-Rosenberg, S. (2007). Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res. 67:4507–4513.
  • Sinha, P., Clements, V. K., and Ostrand-Rosenberg, S. (2005b). Interleukin-13-regulated M2 macrophages in combination with myeloid suppressor cells block immune surveillance against metastasis. Cancer Res. 65:11743–11751.
  • Sinha, P., Clements, V. K., and Ostrand-Rosenberg, S. (2005a). Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J. Immunol. 174:636–645.
  • Solheim, J. C., Reber, A. J., Ashour, A. E., Robinson, S., Futakuchi, M., Kurz, S. G., Hood, K., Fields, R. R., Shafer, L. R., Cornell, D., Sutjipto, S., Zurawski, S., LaFace, D. M., Singh, R. K., and Talmadge, J. E. (2007). Spleen but not tumor infiltration by dendritic and T cells is increased by intravenous adenovirus-Flt3 ligand injection. Cancer Gene Ther. 14:364–371.
  • Solito, S., Falisi, E., az-Montero, C. M., Doni, A., Pinton, L., Rosato, A., Francescato, S., Basso, G., Zanovello, P., Onicescu, G., Garrett-Mayer, E., Montero, A. J., Bronte, V., and Mandruzzato, S. (2011). A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood. 118:2254–2265.
  • Stevenson, F. K. (2005). Update on cancer vaccines. Curr Opin Oncol. 17:573–577.
  • Taheri, F., Ochoa, J. B., Faghiri, Z., Culotta, K., Park, H. J., Lan, M. S., Zea, A. H., and Ochoa, A. C. (2001). L-Arginine regulates the expression of the T-cell receptor zeta chain (CD3zeta) in Jurkat cells. Clin Cancer Res. 7:958s–965s.
  • Talmadge, J. E., Hood, K. C., Zobel, L. C., Shafer, L. R., Coles, M., and Toth, B. (2007). Chemoprevention by cyclooxygenase-2 inhibition reduces immature myeloid suppressor cell expansion. Int Immunopharmacol. 7:140–151.
  • Toh, B., Wang, X., Keeble, J., Sim, W. J., Khoo, K., Wong, W. C., Kato, M., Prevost-Blondel, A., Thiery, J. P., and Abastado, J. P. (2011). Mesenchymal transition and dissemination of cancer cells is driven by myeloid-derived suppressor cells infiltrating the primary tumor. PLoS Biol. 9:e1001162–1001177.
  • Van Ginderachter, J. A., Meerschaut, S., Liu, Y., Brys, L., De, Groeve K., Hassanzadeh, Ghassabeh G., Raes, G., and De, Baetselier P. (2006). Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands reverse CTL suppression by alternatively activated (M2) macrophages in cancer. Blood. 108:525–535.
  • Varesio, L., Giovarelli, M., Landolfo, S., and Forni, G. (1979). Suppression of proliferative response and lymphokine production during the progression of a spontaneous tumor. Cancer Res. 39:4983–4988.
  • Vincent, J., Mignot, G., Chalmin, F., Ladoire, S., Bruchard, M., Chevriaux, A., Martin, F., Apetoh, L., Rebe, C., and Ghiringhelli, F. (2010). 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 70:3052–3061.
  • Whiteside, T. L., Miescher, S., Moretta, L., and von, Fliedner, V. (1988). Cloning and proliferating precursor frequencies of tumor-infiltrating lymphocytes from human solid tumors. Transplant Proc. 20:342–343.
  • Whiteside, T. L. and Rabinowich, H. (1998). The role of Fas/FasL in immunosuppression induced by human tumors. Cancer Immunol Immunother. 46:175–184.
  • Youn, J. I., Collazo, M., Shalova, I. N., Biswas, S. K., and Gabrilovich, D. I. (2012). Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J Leukoc Biol. 91:167–181.
  • Youn, J. I., Nagaraj, S., Collazo, M., and Gabrilovich, D. I. (2008b). Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol. 181:5791–5802.
  • Youn, J. I., Nagaraj, S., Collazo, M., and Gabrilovich, D. I. (2008a). Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol. 181:5791–5802.
  • Young, M. R., Newby, M., and Wepsic, H. T. (1987). Hematopoiesis and suppressor bone marrow cells in mice bearing large metastatic Lewis lung carcinoma tumors. Cancer Res. 47:100–105.
  • Zarour, H., De, Smet C., Lehmann, F., Marchand, M., Lethe, B., Romero, P., Boon, T., and Renauld, J. C. (1996). The majority of autologous cytolytic T-lymphocyte clones derived from peripheral blood lymphocytes of a melanoma patient recognize an antigenic peptide derived from gene Pmel17/gp100. J Invest Dermatol. 107:63–67.
  • Zea, A. H., Curti, B. D., Longo, D. L., Alvord, W. G., Strobl, S. L., Mizoguchi, H., Creekmore, S. P., O’Shea, J. J., Powers, G. C., Urba, W. J., and . (1995). Alterations in T cell receptor and signal transduction molecules in melanoma patients. Clin Cancer Res. 1:1327–1335.
  • Zea, A. H., Rodriguez, P. C., Atkins, M. B., Hernandez, C., Signoretti, S., Zabaleta, J., McDermott, D., Quiceno, D., Youmans, A., O’Neill, A., Mier, J., and Ochoa, A. C. (2005). Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res. 65:3044–3048.
  • Zea, A. H., Rodriguez, P. C., Culotta, K. S., Hernandez, C. P., DeSalvo, J., Ochoa, J. B., Park, H. J., Zabaleta, J., and Ochoa, A. C. (2004). l-Arginine modulates CD3zeta expression and T cell function in activated human T lymphocytes. Cell Immunol. 232:21–31.
  • Zhang, C., Hein, T. W., Wang, W., Miller, M. W., Fossum, T. W., McDonald, M. M., Humphrey, J. D., and Kuo, L. (2004). Upregulation of vascular arginase in hypertension decreases nitric oxide-mediated dilation of coronary arterioles. Hypertension 44:935–943.
  • Zhu, M. Y., Iyo, A., Piletz, J. E., and Regunathan, S. (2004). Expression of human arginine decarboxylase, the biosynthetic enzyme for agmatine. Biochim. Biophys. Acta 1670:156–164.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.