Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 41, 2012 - Issue 6-7
646
Views
73
CrossRef citations to date
0
Altmetric
Research Article

Host Indoleamine 2,3-Dioxygenase: Contribution to Systemic Acquired Tumor Tolerance

&
Pages 765-797 | Published online: 27 Sep 2012

REFERENCES

  • Adam, R., Russing, D., Adams, O., Ailyati, A., Sik Kim, K., Schroten, H., Daubener, W. (2005). Role of human brain microvascular endothelial cells during central nervous system infection. Significance of indoleamine 2,3-dioxygenase in antimicrobial defence and immunoregulation. Thromb. Haemost. 94:341–346.
  • Alexander, A. M. Crawford, M., Bertera, S., Rudert, W. A., Takikawa, O., Robbins, P. D., Trucco, M. (2002). Indoleamine 2,3-dioxygenase expression in transplanted NOD Islets prolongs graft survival after adoptive transfer of diabetogenic splenocytes. Diabetes 51:356–365.
  • Arefayene, M., Philips, S., Cao, D., Mamidipalli, S., Desta, Z., Flockhart, D. A., Wilkes, D. S., Skaar, T. C. (2009). Identification of genetic variants in the human indoleamine 2,3-dioxygenase (IDO1) gene, which have altered enzyme activity. Pharmacogenet. Genom. 19:464–476.
  • Attwood, J. T., Munn, D. H. Macrophage suppression of T cell activation: a potential mechanism of peripheral tolerance. Int. Rev. Immunol. 1999;18:515–525.
  • Baban, B., Chandler, P., McCool, D., Marshall, B., Munn, D. H., Mellor, A. L. (2004). Indoleamine 2,3-dioxygenase expression is restricted to fetal trophoblast giant cells during murine gestation and is maternal genome specific. J. Reprod. Immunol. 61:67–77.
  • Baban, B., Chandler, P. R., Johnson, B. A., 3rd, Huang, L., Li, M., Sharpe, M. L., Francisco, L. M., Sharpe, A. H., Blazar, B. R., Munn, D. H., Mellor, A. L. (2011). Physiologic control of IDO competence in splenic dendritic cells. J. Immunol. 187:2329–2335.
  • Baban, B., Chandler, P. R., Sharma, M. D., Pihkala, J., Koni, P. A., Munn, D. H., Mellor, A. L. (2009). IDO activates regulatory T cells and blocks their conversion into Th17-like T cells. J. Immunol. 183:2475–2483.
  • Baban, B., Hansen, A. M., Chandler, P. R., Manlapat, A., Bingaman, A., Kahler, D. J., Munn, D. H. Mellor, A. L. (2005). A minor population of splenic dendritic cells expressing CD19 mediates IDO-dependent T cell suppression via type I IFN signaling following B7 ligation. Int. Immunol. 17:909–919.
  • Ball, H. J., Sanchez-Perez, A., Weiser, S., Austin, C. J., Astelbauer, F., Miu, J., McQuillan, J. A., Stocker, R., Jermiin, L. S., Hunt, N. H. (2007). Characterization of an indoleamine 2,3-dioxygenase-like protein found in humans and mice. Gene 396:203–213.
  • Ball, H. J., Yuasa, H. J., Austin, C. J., Weiser, S., Hunt, N. H. (2009). Indoleamine 2,3-dioxygenase-2; a new enzyme in the kynurenine pathway. Int. J. Biochem. Cell Biol. 41:467–471.
  • Bankoti, J., Rase, B., Simones, T., Shepherd, D. M. (2010). Functional and phenotypic effects of AhR activation in inflammatory dendritic cells. Toxicol. Appl. Pharmacol. 246:18–28.
  • Belladonna, M. L., Orabona, C., Grohmann, U., Puccetti, P. (2009). TGF-beta and kynurenines as the key to infectious tolerance. Trends Mol. Med. 15:41–49.
  • Belladonna, M. L., Volpi, C., Bianchi, R., Vacca, C., Orabona, C., Pallotta, M. T., Boon, L., Gizzi, S., Fioretti, M. C., Grohmann, U., Puccetti, P. (2008). Cutting edge: Autocrine TGF-beta sustains default tolerogenesis by IDO-competent dendritic cells. J. Immunol. 181:5194–5198.
  • Beutelspacher, S. C., Pillai, R., Watson, M. P., Tan, P. H., Tsang, J., McClure, M. O., George, A. J., Larkin, D. F. (2006a). Function of indoleamine 2,3-dioxygenase in corneal allograft rejection and prolongation of allograft survival by over-expression. Eur. J. Immunol. 36:690–700.
  • Beutelspacher, S. C., Tan, P. H., McClure, M. O., Larkin, D. F., Lechler, R. I., George, A. J. (2006b). Expression of indoleamine 2,3-dioxygenase (IDO) by endothelial cells: implications for the control of alloresponses. Am. J. Transplant. 6:1320–1330.
  • Black, C. A., Rohan, L. C., Cost, M., Watkins, S. C., Draviam, R., Alber, S., Edwards, R. P. (2000). Vaginal mucosa serves as an inductive site for tolerance. J. Immunol. 165:5077–5083.
  • Boasso, A., Herbeuval, J. P., Hardy, A. W., Anderson, S. A., Dolan, M. J., Fuchs, D., Shearer, G. M. (2007). HIV inhibits CD4+ T-cell proliferation by inducing indoleamine 2,3-dioxygenase in plasmacytoid dendritic cells. Blood 109:3351–3359.
  • Bodaghi, B., Goureau, O., Zipeto, D., Laurent, L., Virelizier, J. L., Michelson, S. (1999). Role of IFN-gamma-induced indoleamine 2,3 dioxygenase and inducible nitric oxide synthase in the replication of human cytomegalovirus in retinal pigment epithelial cells. J. Immunol. 162:957–964.
  • Bonertz, A., Weitz, J., Pietsch, D. H., Rahbari, N. N., Schlude, C., Ge, Y., Juenger, S., Vlodavsky, I., Khazaie, K., Jaeger, D., Reissfelder, C., Antolovic, D., Aigner, M., Koch, M., Beckhove, P. (2009). Antigen-specific Tregs control T cell responses against a limited repertoire of tumor antigens in patients with colorectal carcinoma. J. Clin. Invest. 119:3311–3321.
  • Boon, T., van der Bruggen, P. (1996). Human tumor antigens recognized by T lymphocytes. J. Exp. Med. 183:725–9.
  • Brandacher, G., Perathoner, A., Ladurner, R., Schneeberger, S., Obrist, P., Winkler, C., Werner, E. R., Werner-Felmayer, G., Weiss, H. G., Gobel, G., Margreiter, R., Konigsrainer, A., Fuchs, D., Amberger, A. Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: Effect on tumor-infiltrating T cells. Clin. Cancer Res. 2006;12:1144–51.
  • Braun, D., Longman, R. S., Albert, M. L. (2005). A two-step induction of indoleamine 2,3 dioxygenase (IDO) activity during dendritic-cell maturation. Blood 2005;106:2375–81.
  • Brenk, M., Scheler, M., Koch, S., Neumann, J., Takikawa, O., Hacker, G., Bieber, T., von Bubnoff, D. (2009). Tryptophan deprivation induces inhibitory receptors ILT3 and ILT4 on dendritic cells favoring the induction of human CD4+CD25+ Foxp3+ T regulatory cells. J. Immunol. 183:145–154.
  • Brody, J. R., Costantino, C. L., Berger, A. C., Sato, T., Lisanti, M. P., Yeo, C. J., Emmons, R. V., Witkiewicz, A. K. (2009). Expression of indoleamine 2,3-dioxygenase in metastatic malignant melanoma recruits regulatory T cells to avoid immune detection and affects survival. Cell Cycle 8:1930–1934.
  • Calzascia, T., Loh, J. M., Di Berardino-Besson, W., Masson, F., Guillaume, P., Burkhardt, K., Herrera, P. L., Dietrich, P. Y., Walker, P. R. (2008). Peripheral tolerance limits CNS accumulation of CD8 T cells specific for an antigen shared by tumor cells and normal astrocytes. Glia 56:1625–1636.
  • Chamuleau, M. E., van de Loosdrecht, A. A., Hess, C. J., Janssen, J. J., Zevenbergen, A., Delwel, R., Valk, P. J., Lowenberg, B., Ossenkoppele, G. J. (2008). High INDO (indoleamine 2,3-dioxygenase) mRNA level in blasts of acute myeloid leukemic patients predicts poor clinical outcome. Haematologica 93:1894–1898.
  • Chang, M. Y., Smith, C., Duhadaway, J. B., Pyle, J. R., Boulden, J., Peralta Soler, A., Muller, A. J., Laury-Kleintop LD, Prendergast GC. Cardiac and gastrointestinal liabilities caused by deficiency in the immune modulatory enzyme indoleamine 2,3-dioxygenase. Cancer Biol Ther. 2011;12.
  • Cheever, M. A. (2008). Twelve immunotherapy drugs that could cure cancers. Immunol. Rev. 222:357–368.
  • Chen, W., Liang, X., Peterson, A. J., Munn, D. H., Blazar, B. R. (2008). The indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive T regulatory cell generation. J. Immunol. 181:5396–5404.
  • Chung, D. J., Rossi, M., Romano, E., Ghith, J., Yuan, J., Munn, D. H., Young, J. W. (2009). Indoleamine 2,3-dioxygenase-expressing mature human monocyte-derived dendritic cells expand potent autologous regulatory T cells. Blood 114:555–563.
  • Chung, K. T., Gadupudi, G. S. (2011). Possible roles of excess tryptophan metabolites in cancer. Environ. Mol. Mutagen 52:81–104.
  • Ciorba, M. A., Bettonville, E. E., McDonald, K. G., Metz, R., Prendergast, G. C., Newberry, R. D., Stenson, W. F. (2010). Induction of IDO-1 by immunostimulatory DNA limits severity of experimental colitis. J. Immunol. 184:3907–3916.
  • Clark, C. E., Beatty, G. L., Vonderheide, R. H. (2009). Immunosurveillance of pancreatic adenocarcinoma: insights from genetically engineered mouse models of cancer. Cancer Lett. 279:1–7.
  • Cobbold, S. P.,, Adams E., Farquhar, C. A., Nolan, K. F., Howie, D., Lui, K. O., Fairchild, P. J., Mellor, A. L., Ron, D., Waldmann, H. (2009). Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc. Natl. Acad. Sci. USA 106:12055–12060.
  • Cochran, A. J., Huang, R. R., Lee, J., Itakura, E., Leong, S. P., Essner, R. (2006). Tumour-induced immune modulation of sentinel lymph nodes. Nat. Rev. Immunol. 6:659–670.
  • Colombo, M. P., Piconese, S. (2007). Regulatory-T-cell inhibition versus depletion: the right choice in cancer immunotherapy. Nat. Rev. Cancer 7:880–887.
  • Corm, S., Berthon, C., Imbenotte, M., Biggio, V., Lhermitte, M., Dupont, C., Briche, I., Quesnel, B. (2009). Indoleamine 2,3-dioxygenase activity of acute myeloid leukemia cells can be measured from patients’ sera by HPLC and is inducible by IFN-gamma. Leuk. Res. 33:490–494.
  • Cuenca, A., Cheng, F., Wang, H., Brayer, J., Horna, P., Gu, L., Bien, H., Borrello, I. M., Levitsky, H. I., Sotomayor, E. M. (2003). Extra-lymphatic solid tumor growth is not immunologically ignored and results in early induction of antigen-specific T-cell anergy: dominant role of cross-tolerance to tumor antigens. Cancer Res. 63:9007–9015.
  • Cuffy, M. C., Silverio, A. M., Qin, L., Wang, Y., Eid, R., Brandacher, G., Lakkis, F. G., Fuchs, D., Pober, J. S., Tellides, G. (2007). Induction of indoleamine 2,3-dioxygenase in vascular smooth muscle cells by interferon-gamma contributes to medial immunoprivilege. J. Immunol. 179:5246–5254.
  • Curiel, T. J. (2008). Regulatory T cells and treatment of cancer. Curr. Opin. Immunol. 20:241–246.
  • Curti, A., Aluigi, M., Pandolfi, S., Ferri, E., Isidori, A., Salvestrini, V., Durelli, I., Horenstein, A. L., Fiore, F., Massaia, M., Piccioli, M., Pileri, S. A., Zavatto, E., D’Addio, A., Baccarani, M., Lemoli, R. M. (2007a). Acute myeloid leukemia cells constitutively express the immunoregulatory enzyme indoleamine 2,3-dioxygenase. Leukemia 21:353–355.
  • Curti, A., Pandolfi, S., Valzasina, B., Aluigi, M., Isidori, A., Ferri, E., Salvestrini, V., Bonanno, G., Rutella, S., Durelli, I., Horenstein, A. L., Fiore, F., Massaia, M., Colombo, M. P., Baccarani, M., Lemoli, R. M. (2007b). Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25- into CD25+ T regulatory cells. Blood 109:2871–2877.
  • Darrasse-Jeze, G., Bergot, A. S., Durgeau, A., Billiard, F., Salomon, B. L., Cohen, J. L., Bellier, B., Podsypanina, K., Klatzmann, D. (2009). Tumor emergence is sensed by self-specific CD44hi memory Tregs that create a dominant tolerogenic environment for tumors in mice. J. Clin. Invest. 119:2648–2662.
  • Daubener, W., Remscheid, C., Nockemann, S., Pilz, K., Seghrouchni, S., Mackenzie, C., Hadding, U. (1996). Anti-parasitic effector mechanisms in human brain tumor cells: role of interferon-gamma and tumor necrosis factor-alpha. Eur. J. Immunol. 26:487–492.
  • Desvignes, L., Ernst, J. D. (2009). Interferon-gamma-responsive nonhematopoietic cells regulate the immune response to Mycobacterium tuberculosis. Immunity 31:974–985.
  • DiNatale, B. C., Murray, I. A., Schroeder, J. C., Flaveny, C. A., Lahoti, T. S., Laurenzana, E. M., Omiecinski, C. J., Perdew, G. H. (2010). Kynurenic acid is a potent endogenous aryl hydrocarbon receptor ligand that synergistically induces interleukin-6 in the presence of inflammatory signaling. Toxicol. Sci. 115:89–97.
  • Divanovic, S., Sawtell, N. M., Trompette, A., Warning, J. I., Dias, A., Cooper, A. M., Yap, G. S., Arditi, M., Shimada, K., Duhadaway, J. B., Prendergast, G. C., Basaraba, R. J., Mellor, A. L., Munn, D. H., Aliberti, J., Karp, C. L. (2012). Opposing biological functions of tryptophan catabolizing enzymes during intracellular infection. J Infect Dis. 205:152–161.
  • Duluc, D., Delneste, Y., Tan, F., Moles, M. P, Grimaud, L., Lenoir, J., Preisser, L., Anegon, I., Catala, L., Ifrah, N., Descamps, P., Gamelin, E., Gascan, H., Hebbar, M., Jeannin, P. (2007).Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells. Blood 110:4319–4330.
  • Ercolini, A. M., Ladle, B. H., Manning, E. A., Pfannenstiel, L. W., Armstrong, T. D., Machiels, J. P., Bieler, J. G., Emens, L. A., Reilly, R. T., Jaffee, E. M. (2005). Recruitment of latent pools of high-avidity CD8(+) T cells to the antitumor immune response. J. Exp. Med. 201:1591–1602.
  • Fallarino, F., Grohmann, U., You, S., McGrath, B. C., Cavener, D. R., Vacca, C., Orabona, C., Bianchi, R., Belladonna, M. L., Volpi, C., Santamaria, P., Fioretti, M. C., Puccetti, P. (2006). The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J. Immunol. 176:6752–6761.
  • Fallarino, F., Vacca, C., Orabona, C., Belladonna, M. L., Bianchi, R., Marshall, B., Keskin, D. B., Mellor, A. L., Fioretti, M. C., Grohmann, U., Puccetti, P. (2002). Functional expression of indoleamine 2,3-dioxygenase by murine CD8 alpha(+) dendritic cells. Int. Immunol. 14:65–68.
  • Favre, D., Mold, J., Hunt, P. W., Kanwar, B., Loke, P., Seu, L., Barbour, J. D., Lowe, M. M., Jayawardene, A., Aweeka, F., Huang, Y., Douek, D. C., Brenchley, J. M., Martin, J. N., Hecht, F. M., Deeks, S. G., McCune, J. M. (2010). Tryptophan catabolism by indoleamine 2,3-dioxygenase 1 alters the balance of TH17 to regulatory T cells in HIV disease. Sci. Transl. Med. 2:32ra36.
  • Feder-Mengus, C., Wyler, S., Hudolin, T., Ruszat, R., Bubendorf, L., Chiarugi, A., Pittelli, M., Weber, W. P., Bachmann, A., Gasser, T. C., Sulser, T., Heberer, M., Spagnoli, G. C., Provenzano, M. (2008). High expression of indoleamine 2,3-dioxygenase gene in prostate cancer. Eur. J. Cancer 44:2266–2275.
  • Ferdinande, L., Demetter, P., Perez-Novo, C., Waeytens, A., Taildeman, J., Rottiers, I., Rottiers, P., De Vos, M., Cuvelier, C. A. (2008). Inflamed intestinal mucosa features a specific epithelial expression pattern of indoleamine 2,3-dioxygenase. Int. J. Immunopathol. Pharmacol. 21:289–295.
  • Francois, M., Romieu-Mourez, R., Li, M., Galipeau, J. (2012). Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol Ther. 20:187–195.
  • Fuchs, D., Moller, A. A., Reibnegger, G., Stockle, E., Werner, E. R., Wachter, H. (1990). Decreased serum tryptophan in patients with HIV-1 infection correlates with increased serum neopterin and with neurologic/psychiatric symptoms. J. Acquir. Immune Defic. Syndr. 3:873–876.
  • Fujigaki, H., Saito, K., Lin, F., Fujigaki, S., Takahashi, K., Martin, B. M., Chen, C. Y., Masuda, J,, Kowalak, J., Takikawa, O., Seishima, M., Markey, S. P. (2006). Nitration and inactivation of IDO by peroxynitrite. J. Immunol. 176:372–379.
  • Gerlini, G., Di Gennaro, P., Mariotti, G., Urso, C., Chiarugi, A., Pimpinelli, N., Borgognoni, L. (2010). Indoleamine 2,3-dioxygenase+ cells correspond to the BDCA2+ plasmacytoid dendritic cells in human melanoma sentinel nodes. J. Invest. Dermatol. 130:898–901.
  • Grant, R. S., Naif, H., Thuruthyil, S. J., Nasr, N., Littlejohn, T., Takikawa, O., Kapoor, V. (2000). Induction of indolamine 2,3-dioxygenase in primary human macrophages by human immunodeficiency virus type 1 is strain dependent. J. Virol. 74:4110–4115.
  • Grohmann, U., Orabona, C., Fallarino, F., Vacca, C., Calcinaro, F., Falorni, A., Candeloro, P., Belladonna, M. L., Bianchi, R., Fioretti, M. C., Puccetti, P. (2002). CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat. Immunol. 3:1097–1101.
  • Grohmann, U., Volpi, C., Fallarino, F., Bozza, S., Bianchi, R., Vacca, C., Orabona, C., Belladonna, M. L., Ayroldi, E., Nocentini, G., Boon, L., Bistoni, F., Fioretti, M. C., Romani, L., Riccardi, C., Puccetti, P. (2007). Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nat. Med. 13:579–586.
  • Gu, T., Rowswell-Turner, R. B., Kilinc, M. O., Egilmez, N. K. (2010). Central role of IFNgamma-indoleamine 2,3-dioxygenase axis in regulation of interleukin-12-mediated antitumor immunity. Cancer Res. 70:129–138.
  • Guillemin, G. J. (2012) Quinolinic acid, the inescapable neurotoxin. FEBS J., in press.
  • Guillonneau, C., Hill, M., Hubert, F. X., Chiffoleau, E., Herve, C., Li, X. L., Heslan, M., Usal, C., Tesson, L., Menoret, S., Saoudi, A., Le Mauff, B., Josien, R., Cuturi, M. C., Anegon, I. (2007). CD40Ig treatment results in allograft acceptance mediated by CD8CD45RC T cells, IFN-gamma, and indoleamine 2,3-dioxygenase. J. Clin. Invest. 117:1096–1106.
  • Gurtner GJ, Newberry RD, Schloemann SR, McDonald KG, Stenson WF. Inhibition of indoleamine 2,3-dioxygenase augments trinitrobenzene sulfonic acid colitis in mice. Gastroenterology. 2003;125:1762–73.
  • Hainz, U., Jurgens, B., Wekerle, T., Seidel, M. G., Heitger, A. (2007). Indoleamine 2,3-dioxygenase in hematopoietic stem cell transplantation. Curr. Drug Metab. 8:267–272.
  • Hainz, U., Obexer, P., Winkler, C., Sedlmayr, P., Takikawa, O., Greinix, H., Lawitschka, A., Potschger, U., Fuchs, D., Ladisch, S., Heitger, A. (2005). Monocyte-mediated T-cell suppression and augmented monocyte tryptophan catabolism after human hematopoietic stem-cell transplantation. Blood 105:4127–4134.
  • Hamid, O., Schmidt, H., Nissan, A., Ridolfi, L., Aamdal, S., Hansson, J., Guida, M., Hyams, D. M., Gomez, H., Bastholt, L., Chasalow, S. D., Berman, D. (2011). A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J. Transl. Med. 9:204.
  • Hansen, A. M., Ball, H. J., Mitchell, A. J., Miu, J., Takikawa, O., Hunt, N. H. (2004). Increased expression of indoleamine 2,3-dioxygenase in murine malaria infection is predominantly localised to the vascular endothelium. Int. J. Parasitol. 34:1309–1319.
  • Harrington, L., Srikanth, C. V., Antony, R., Rhee, S. J., Mellor, A. L., Shi, H. N., Cherayil, B. J. (2008). Deficiency of indoleamine 2,3-dioxygenase enhances commensal-induced antibody responses and protects against Citrobacter rodentium-induced colitis. Infect. Immun. 76:3045–3053.
  • Hayashi, T., Beck, L., Rossetto, C., Gong, X., Takikawa, O., Takabayashi, K., Broide, D. H., Carson, D. A., Raz, E. (2004). Inhibition of experimental asthma by indoleamine 2,3-dioxygenase. J Clin Invest. 114:270–279.
  • Hayashi, T., Mo, J. H., Gong, X., Rossetto, C., Jang, A., Beck, L., Elliott, G. I., Kufareva, I., Abagyan, R., Broide, D. H., Lee, J., Raz, E. (2007). 3-Hydroxyanthranilic acid inhibits PDK1 activation and suppresses experimental asthma by inducing T cell apoptosis. Proc. Natl. Acad. Sci. USA 104:18619–18624.
  • Haynes, N. M., van der Most, R. G., Lake, R. A., Smyth, M. J. (2008). Immunogenic anti-cancer chemotherapy as an emerging concept. Curr. Opin. Immunol. 2008;20:545–557.
  • Herbert, A., Ng, H., Jessup, W., Kockx, M., Cartland, S., Thomas, S. R., Hogg, P. J., Wargon, O. (2011). Hypoxia regulates the production and activity of glucose transporter-1 and indoleamine 2,3-dioxygenase in monocyte-derived endothelial-like cells: possible relevance to infantile haemangioma pathogenesis. Br. J. Dermatol. 164:308–315.
  • Hildner, K., Edelson, B. T., Purtha, W. E., Diamond, M., Matsushita, H., Kohyama, M., Calderon, B., Schraml, B. U., Unanue, E. R., Diamond, M. S., Schreiber, R. D., Murphy, T. L., Murphy, K. M. (2008). Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 322:1097–1100.
  • Holmes, E. W. (1998). Expression and regulation of interferon-gamma-induced tryptophan catabolism in cultured skin fibroblasts. J. Interferon Cytokine Res. 18:509–520.
  • Hou, D. Y., Muller, A. J., Sharma, M. D., DuHadaway, J., Banerjee, T., Johnson, M., Mellor, A. L., Prendergast, G. C., Munn, D. H. (2007). Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res. 67:792–801.
  • Huang, A., Fuchs, D., Widner, B., Glover, C., Henderson, D. C., Allen-Mersh, T. G. (2002). Serum tryptophan decrease correlates with immune activation and impaired quality of life in colorectal cancer. Br. J. Cancer 86:1691–1696.
  • Huang, A. Y., Golumbek, P., Ahmadzadeh, M., Jaffee, E., Pardoll, D., Levitsky, H. (1994). Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 264:961–965.
  • Hwu, P., Du, M. X., Lapointe, R., Do, M., Taylor, M. W., Young, H. A. (2000). Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J. Immunol. 164:3596–3599.
  • Ino, K., Yamamoto, E., Shibata, K., Kajiyama, H., Yoshida, N., Terauchi, M., Nawa, A., Nagasaka, T., Takikawa, O., Kikkawa, F. (2008). Inverse correlation between tumoral indoleamine 2,3-dioxygenase expression and tumor-infiltrating lymphocytes in endometrial cancer: its association with disease progression and survival. Clin. Cancer Res. 14:2310–2317.
  • Ino, K., Yoshida, N., Kajiyama, H., Shibata, K., Yamamoto, E., Kidokoro, K., Takahashi, N., Terauchi, M., Nawa, A., Nomura, S., Nagasaka, T., Takikawa, O., Kikkawa, F. (2006). Indoleamine 2,3-dioxygenase is a novel prognostic indicator for endometrial cancer. Br. J. Cancer 2006;95:1555–1561.
  • Ito, H., Hoshi, M., Ohtaki, H., Taguchi, A., Ando, K., Ishikawa, T., Osawa, Y., Hara, A., Moriwaki, H., Saito, K., Seishima, M. (2010). Ability of IDO to attenuate liver injury in alpha-galactosylceramide-induced hepatitis model. J. Immunol. 185:4554–4560.
  • Ito, M., Ogawa, K., Takeuchi, K., Nakada, A., Heishi, M., Suto, H., Mitsuishi, K., Sugita, Y., Ogawa, H., Ra, C. (2004). Gene expression of enzymes for tryptophan degradation pathway is upregulated in the skin lesions of patients with atopic dermatitis or psoriasis. J. Dermatol. Sci. 36:157–164.
  • Jackman, K. A., Brait, V. H., Wang, Y., Maghzal, G. J., Ball, H. J., McKenzie, G., De Silva, T. M., Stocker, R., Sobey, C. G. (2011). Vascular expression, activity and function of indoleamine 2,3-dioxygenase-1 following cerebral ischaemia-reperfusion in mice. Naunyn Schmiedebergs Arch Pharmacol. 383:471–481.
  • Jalili, R. B., Forouzandeh, F., Moeenrezakhanlou, A., Rayat, G. R., Rajotte, R. V., Uludag, H., Ghahary, A. (2009). Mouse pancreatic islets are resistant to indoleamine 2,3 dioxygenase-induced general control nonderepressible-2 kinase stress pathway and maintain normal viability and function. Am. J. Pathol. 174:196–205.
  • Jasperson, L. K., Bucher, C., Panoskaltsis-Mortari, A., Mellor, A. L., Munn, D. H., Blazar, B. R. (2009). Inducing the tryptophan catabolic pathway, indoleamine 2,3-dioxygenase (IDO), for suppression of graft-versus-host disease (GVHD) lethality. Blood 114:5062–5070.
  • Jasperson, L. K., Bucher, C., Panoskaltsis-Mortari, A., Taylor, P. A., Mellor, A. L., Munn, D. H., Blazar, B. R. (2008). Indoleamine 2,3-dioxygenase is a critical regulator of acute graft-versus-host disease lethality. Blood 111:3257–3265.
  • Jia, L., Schweikart, K., Tomaszewski, J., Page, J. G., Noker, P. E., Buhrow, S. A., Reid, J. M., Ames, M. M., Munn, D. H. (2008). Toxicology and pharmacokinetics of 1-methyl-d-tryptophan: absence of toxicity due to saturating absorption. Food Chem. Toxicol. 46:203–211.
  • Johnson, B. A., 3rd, Kahler, D. J., Baban, B., Chandler, P. R., Kang, B., Shimoda, M., Koni, P. A., Pihkala, J., Vilagos, B., Busslinger, M., Munn, D. H., Mellor, A. L. (2010). B-lymphoid cells with attributes of dendritic cells regulate T cells via indoleamine 2,3-dioxygenase. Proc. Natl. Acad. Sci. USA 107:10644–10648.
  • Johnson, T. S., Munn, D. H., Maria, B. L. (2012). Modulation of tumor tolerance in primary central nervous system malignancies. Clin. Dev. Immunol. 2012:1–14.
  • Kallberg, E., Wikstrom, P., Bergh, A., Ivars, F., Leanderson, T. (2010). Indoleamine 2,3-dioxygenase (IDO) activity influence tumor growth in the TRAMP prostate cancer model. Prostate 70:1461–1470.
  • Koblish, H. K., Hansbury, M. J., Bowman, K. J., Yang, G., Neilan, C. L., Haley, P. J., Burn, T. C., Waeltz, P., Sparks, R. B., Yue, E. W., Combs, A. P., Scherle, P. A., Vaddi, K., Fridman, J. S. (2010). Hydroxyamidine inhibitors of indoleamine-2,3-dioxygenase potently suppress systemic tryptophan catabolism and the growth of IDO-expressing tumors. Mol. Cancer Ther. 9:489–498.
  • Kraman, M., Bambrough, P. J., Arnold, J. N., Roberts, E. W., Magiera, L., Jones, J. O., Gopinathan, A., Tuveson, D. A., Fearon, D. T. (2010). Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science 330:827–830.
  • Kwidzinski, E., Bechmann, I. (2007). IDO expression in the brain: a double-edged sword. J Mol Med (Berl). 85:1351–1359.
  • Kwidzinski, E., Bunse, J., Aktas, O., Richter, D., Mutlu, L., Zipp, F., Nitsch, R., Bechmann, I. (2005). Indolamine 2,3-dioxygenase is expressed in the CNS and down-regulates autoimmune inflammation. FASEB J. 19:1347–9.
  • Kwidzinski, E., Bunse, J., Kovac, A. D., Ullrich, O., Zipp, F., Nitsch, R., Bechmann, I. (2003). IDO (indolamine 2,3-dioxygenase) expression and function in the CNS. Adv. Exp. Med. Biol. 527:113–8.
  • Lake, R. A., Robinson, B. W. (2005). Immunotherapy and chemotherapy–a practical partnership. Nat. Rev. Cancer 5:397–405.
  • Lee, J. H., Torisu-Itakara, H., Cochran, A. J., Kadison, A., Huynh, Y., Morton, D. L., Essner, R. (2005). Quantitative analysis of melanoma-induced cytokine-mediated immunosuppression in melanoma sentinel nodes. Clin. Cancer Res. 11:107–112.
  • Lee, J. R., Dalton, R. R., Messina, J. L., Sharma, M. D., Smith, D. M., Burgess, R. E., Mazzella, F., Antonia, S. J., Mellor, A. L., Munn, D. H. (2003). Pattern of recruitment of immunoregulatory antigen-presenting cells in malignant melanoma. Lab. Invest. 83:1457–1466.
  • Liu, H., Liu, L., Fletcher, B. S., Visner, G.A. (2006). Novel action of indoleamine 2,3-dioxygenase attenuating acute lung allograft injury. Am. J. Respir. Crit. Care Med. 173:566–572.
  • Liu, X., Shin, N., Koblish, H. K., Yang, G., Wang, Q., Wang, K., Leffet, L., Hansbury, M. J., Thomas, B., Rupar, M., Waeltz, P., Bowman, K. J., Polam, P., Sparks, R. B., Yue, E. W., Li, Y., Wynn, R., Fridman, J. S., Burn, T. C., Combs, A. P., Newton, R. C., Scherle, P. A. (2010). Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood 115:3520–3530.
  • Lo, B. K., Jalili, R. B., Zloty, D., Ghahary, A., Cowan, B., Dutz, J. P., Carr, N., Shapiro, J., McElwee, K. J. (2011). CXCR3 ligands promote expression of functional indoleamine 2,3-dioxygenase in basal cell carcinoma keratinocytes. Br. J. Dermatol. 165:1030–1036.
  • Lob, S., Konigsrainer, A., Rammensee, H. G., Opelz, G., Terness, P. (2009a). Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the trees? Nat. Rev. Cancer 9:445–452.
  • Lob, S., Konigsrainer, A., Schafer, R., Rammensee, H. G., Opelz, G., Terness, P. (2008). Levo- but not dextro-1-methyl tryptophan abrogates the IDO activity of human dendritic cells. Blood 111:2152–2154.
  • Lob, S., Konigsrainer, A., Zieker, D., Brucher, B. L., Rammensee, H. G., Opelz, G., Terness, P. (2009b). IDO1 and IDO2 are expressed in human tumors: levo- but not dextro-1-methyl tryptophan inhibits tryptophan catabolism. Cancer Immunol. Immunother. 58:153–157.
  • Lurquin, C., Lethe, B., De Plaen, E., Corbiere, V., Theate, I., van Baren, N., Coulie, P. G., Boon, T. (2005). Contrasting frequencies of antitumor and anti-vaccine T cells in metastases of a melanoma patient vaccinated with a MAGE tumor antigen. J. Exp. Med. 201:249–257.
  • Ma, Y., Kepp, O., Ghiringhelli, F., Apetoh, L., Aymeric, L., Locher, C., Tesniere, A., Martins, I., Ly, A., Haynes, N. M., Smyth, M. J., Kroemer, G., Zitvogel. L. (2010). Chemotherapy and radiotherapy: cryptic anticancer vaccines. Semin. Immunol. 22:113–124.
  • Maksimow, M., Miiluniemi, M., Marttila-Ichihara, F., Jalkanen, S., Hanninen, A. (2006). Antigen targeting to endosomal pathway in dendritic cell vaccination activates regulatory T cells and attenuates tumor immunity. Blood 108:1298–1305.
  • Malone, D. G., Dolan, P. W., Brown, R. R., Kalayoglu, M. V., Arend, R. A., Byrne, G. I., Ozaki, Y. (1994). Interferon gamma induced production of indoleamine 2,3 dioxygenase in cultured human synovial cells. J. Rheumatol. 21:1011–1019.
  • Manches, O., Munn, D., Fallahi, A., Lifson, J., Chaperot, L., Plumas, J., Bhardwaj, N. (2008). HIV-activated human plasmacytoid DCs induce Tregs through an indoleamine 2,3-dioxygenase-dependent mechanism. J. Clin. Invest. 118:3431–3439.
  • Manlapat, A. K., Kahler, D. J., Chandler, P. R., Munn, D. H., Mellor, A. L. (2007). Cell-autonomous control of interferon type I expression by indoleamine 2,3-dioxygenase in regulatory CD19+ dendritic cells. Eur. J. Immunol. 37:1064–1071.
  • Mansfield, A. S., Heikkila, P. S., Vaara, A. T., von Smitten, K. A., Vakkila, J. M., Leidenius, M. H. (2009). Simultaneous Foxp3 and IDO expression is associated with sentinel lymph node metastases in breast cancer. BMC Cancer 9:231.
  • Marshall, N. B., Kerkvliet, N. I. (2010). Dioxin and immune regulation: emerging role of aryl hydrocarbon receptor in the generation of regulatory T cells. Ann. NY Acad. Sci. 1183:25–37.
  • Matteoli, G., Mazzini, E., Iliev, I. D., Mileti, E., Fallarino, F., Puccetti, P., Chieppa, M., Rescigno, M. (2010). Gut CD103+ dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/T effector cell balance and oral tolerance induction. Gut 59:595–604.
  • Mellor, A. L., Baban, B., Chandler, P., Marshall, B., Jhaver, K., Hansen, A., Koni, P. A., Iwashima, M., Munn, D. H. (2003). Cutting edge: induced indoleamine 2,3 dioxygenase expression in dendritic cell subsets suppresses T cell clonal expansion. J. Immunol.171:1652–1655.
  • Mellor, A. L,, Baban, B., Chandler, P. R., Manlapat, A., Kahler, D. J., Munn, D. H. (2005). Cutting edge: CpG oligonucleotides induce splenic CD19+ dendritic cells to acquire potent indoleamine 2,3-dioxygenase-dependent T cell regulatory functions via IFN Type 1 signaling. J. Immunol. 175:5601–5605.
  • Mellor, A. L., Chandler, P., Baban, B., Hansen, A. M., Marshall, B., Pihkala, J., Waldmann, H., Cobbold, S., Adams, E., Munn, D. H. (2004). Specific subsets of murine dendritic cells acquire potent T cell regulatory functions following CTLA4-mediated induction of indoleamine 2,3 dioxygenase. Int. Immunol.16:1391–1401.
  • Mellor, A. L., Keskin, D. B., Johnson, T., Chandler, P., Munn, D. H. (2002). Cells expressing indoleamine 2,3-dioxygenase inhibit T cell responses. J. Immunol. 168:3771–3776.
  • Mellor, A. L., Munn, D. H. (2008). Creating immune privilege: active local suppression that benefits friends, but protects foes. Nat. Rev. Immunol. 8:74–80.
  • Mellor, A. L., Munn, D. H. (2011). Physiologic control of the functional status of Foxp3+ regulatory T cells. J. Immunol. 186:4535–4540.
  • Mellor, A. L., Sivakumar, J., Chandler, P., Smith, K., Molina, H., Mao, D., Munn, D. H. (2001). Prevention of T cell-driven complement activation and inflammation by tryptophan catabolism during pregnancy. Nat. Immunol. 2:64–68.
  • Metz, R., Duhadaway, J. B., Kamasani, U., Laury-Kleintop, L., Muller, A. J., Prendergast, G. C. (2007). Novel tryptophan catabolic enzyme IDO2 is the preferred biochemical target of the antitumor indoleamine 2,3-dioxygenase inhibitory compound D-1-methyl-tryptophan. Cancer Res. 67:7082–7087.
  • Mezrich, J. D., Fechner, J. H., Zhang, X., Johnson, B. P., Burlingham, W. J., Bradfield, C. A. (2010). An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol. 185:3190–3198.
  • Miyazaki, T., Moritake, K., Yamada, K., Hara, N., Osago, H., Shibata, T., Akiyama, Y., Tsuchiya, M. (2009). Indoleamine 2,3-dioxygenase as a new target for malignant glioma therapy. Laboratory investigation. J. Neurosurg. 111:230–237.
  • Mohib, K., Wang, S., Guan, Q., Mellor, A. L., Sun, H., Du, C., Jevnikar, A. M. (2008). Indoleamine 2,3-dioxygenase expression promotes renal ischemia-reperfusion injury. Am. J. Physiol. Renal Physiol. 295:F226–234.
  • Muller, A. J., DuHadaway, J. B., Donover, P. S., Sutanto-Ward, E. (2005a). Prendergast GC. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat. Med. 11:312–319.
  • Muller, A. J., DuHadaway, J. B., Jaller, D., Curtis, P., Metz, R., Prendergast, G. C. (2010). Immunotherapeutic suppression of indoleamine 2,3-dioxygenase and tumor growth with ethyl pyruvate. Cancer Res. 70:1845–1853.
  • Muller, A. J., Malachowski, W. P., Prendergast, G. C. (2005b). Indoleamine 2,3-dioxygenase in cancer: targeting pathological immune tolerance with small-molecule inhibitors. Expert Opin. Ther. Targets 9:831–849.
  • Muller, A. J., Scherle, P. A. (2006). Targeting the mechanisms of tumoral immune tolerance with small-molecule inhibitors. Nat. Rev. Cancer 6:613–625.
  • Muller, A. J., Sharma, M. D., Chandler, P. R., Duhadaway, J. B., Everhart, M. E., Johnson, B. A., 3rd, Kahler, D. J., Pihkala, J., Soler, A. P., Munn, D. H., Prendergast, G. C., Mellor, A. L. (2008). Chronic inflammation that facilitates tumor progression creates local immune suppression by inducing indoleamine 2,3 dioxygenase. Proc. Natl. Acad. Sci. USA105:17073–17078.
  • Munn, D. H., Mellor, A. L. (2007). Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest. 117:1147–1154.
  • Munn, D. H., Mellor, A. L., Rossi, M., Young, J. W. (2005a). Dendritic cells have the option to express IDO-mediated suppression or not. Blood 105:2618.
  • Munn, D. H., Shafizadeh, E., Attwood, J. T., Bondarev, I., Pashine, A., Mellor, A. L. (1999). Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med. 189:1363–1372.
  • Munn, D. H., Sharma, M. D., Baban, B., Harding, H. P., Zhang, Y., Ron, D., Mellor, A. L. (2005b). GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22:633–642.
  • Munn, D. H., Sharma, M. D., Hou, D., Baban, B., Lee, J. R., Antonia, S. J., Messina, J. L., Chandler, P., Koni, P. A., Mellor, A. L. (2004a). Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J. Clin. Invest. 114:280–290.
  • Munn, D. H., Sharma, M. D., Lee, J. R., Jhaver, K. G., Johnson, T. S., Keskin, D. B., Marshall, B., Chandler, P., Antonia, S. J., Burgess, R., Slingluff, C. L., Jr., Mellor, A. L.. (20002). Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 297:1867–1870.
  • Munn, D. H., Sharma, M. D., Mellor, A. L. (2004b). Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J. Immunol. 172:4100–110.
  • Munn, D. H., Zhou, M., Attwood, J. T., Bondarev, I., Conway, S. J., Marshall, B., Brown, C., Mellor, A. L. (1998). Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281:1191–1193.
  • Nakano, S., Takai, K., Isaka, Y., Takahashi, S., Unno, Y., Ogo, N., Matsuno, K., Takikawa, O., Asai, A. ( ).Identification of novel kynurenine production-inhibiting benzenesulfonamide derivatives in cancer cells. Biochem. Biophys. Res. Commun. 419:556–561.
  • Nelson, J. L., Furst, D. E., Maloney, S., Gooley, T., Evans, P. C., Smith, A., Bean, M. A., Ober, C., Bianchi, D. W. (1998). Microchimerism and HLA-compatible relationships of pregnancy in scleroderma. Lancet 351:559–562.
  • Nguyen, N. .T, Kimura, A., Nakahama, T., Chinen, I., Masuda, K., Nohara, K., Fujii-Kuriyama, Y., Kishimoto, T. (2010). Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc. Natl. Acad. Sci. USA 107:19961–19966.
  • Ochsenbein, A. F., Klenerman, P., Karrer, U., Ludewig, B., Pericin, M., Hengartner, H., Zinkernagel, R. M. (1999). Immune surveillance against a solid tumor fails because of immunological ignorance. Proc Natl Acad Sci USA 96:2233–2238.
  • Odemuyiwa, S. O., Ebeling, C., Duta, V., Abel, M., Puttagunta, L., Cravetchi, O., Majaesic, C., Vliagoftis, H., Moqbel, R. (2009). Tryptophan catabolites regulate mucosal sensitization to ovalbumin in respiratory airways. Allergy 64:488–492.
  • Okamoto, A., Nikaido, T., Ochiai, K., Takakura, S., Saito, M., Aoki, Y., Ishii, N., Yanaihara, N., Yamada, K., Takikawa, O., Kawaguchi, R., Isonishi, S., Tanaka, T., Urashima, M. (2005). Indoleamine 2,3-dioxygenase serves as a marker of poor prognosis in gene expression profiles of serous ovarian cancer cells. Clin. Cancer Res. 11:6030–6039.
  • Opitz, C. A., Litzenburger, U. M., Sahm, F., Ott, M., Tritschler, I., Trump, S., Schumacher, T., Jestaedt, L., Schrenk, D., Weller, M., Jugold, M., Guillemin, G. J., Miller, C. L., Lutz, C., Radlwimmer, B., Lehmann, I., von Deimling, A., Wick, W., Platten, M. (2011). An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478:197–203.
  • Orabona, C., Pallotta, M. T., Volpi, C., Fallarino, F., Vacca, C., Bianchi, R., Belladonna, M. L., Fioretti, M. C., Grohmann, U., Puccetti, P. (2008). SOCS3 drives proteasomal degradation of indoleamine 2,3-dioxygenase (IDO) and antagonizes IDO-dependent tolerogenesis. Proc. Natl. Acad. Sci. USA 105:20828–2033.
  • Orabona, C., Puccetti, P., Vacca, C., Bicciato, S., Luchini, A., Fallarino, F., Bianchi, R., Velardi, E., Perruccio, K., Velardi, A., Bronte, V., Fioretti, M. C., Grohmann, U. (2006). Toward the identification of a tolerogenic signature in IDO-competent dendritic cells. Blood 107:2846–2854.
  • Paveglio, S. A., Allard, J., Foster Hodgkins, S. R., Ather, J. L., Bevelander, M., Campbell, J. M., Whittaker LeClair, L. A., McCarthy, S. M., van der Vliet, A., Suratt, B. T., Boyson, J. E., Uematsu, S., Akira, S., Poynter, M. E. (2011). Airway epithelial indoleamine 2,3-dioxygenase inhibits CD4+ T cells during Aspergillus fumigatus antigen exposure. Am. J. Respir. Cell. Mol. Biol. 44:11–23.
  • Peggs, K. S., Quezada, S. A., Allison, J. P. (2008). Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy. Immunol. Rev. 224:141–165.
  • Pilotte, L., Larrieu, P., Stroobant, V., Colau, D., Dolusic, E., Frederick, R., De Plaen, E., Uyttenhove, C., Wouters, J., Masereel, B., Van den Eynde, B. J. (in press). Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. Proc. Natl. Acad. Sci. USA.
  • Podsypanina, K., Li, Y., Varmus, H. E. (2004). Evolution of somatic mutations in mammary tumors in transgenic mice is influenced by the inherited genotype. BMC Med. 2:24.
  • Polak, M. E., Borthwick, N. J., Gabriel, F. G., Johnson, P., Higgins, B., Hurren, J., McCormick, D., Jager, M. J., Cree, I. A. (2007). Mechanisms of local immunosuppression in cutaneous melanoma. Br J Cancer 96:1879–1887.
  • Popov, A., Abdullah, Z., Wickenhauser, C., Saric, T., Driesen, J., Hanisch, F. G., Domann, E., Raven, E. L., Dehus, O., Hermann, C., Eggle, D., Debey, S., Chakraborty, T., Kronke, M., Utermohlen, O., Schultze, J. L.. (2006). Indoleamine 2,3-dioxygenase-expressing dendritic cells form suppurative granulomas following Listeria monocytogenes infection. J. Clin. Invest. 116:3160–3170.
  • Potula, R., Poluektova, L., Knipe, B., Chrastil, J., Heilman, D., Dou, H., Takikawa, O., Munn, D. H., Gendelman, H. E., Persidsky, Y. (2005). Inhibition of indoleamine 2,3-dioxygenase (IDO) enhances elimination of virus-infected macrophages in an animal model of HIV-1 encephalitis. Blood 106:2382–2390.
  • Powell, J. D., Delgoffe, G. M. (2010). The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity 33:301–311.
  • Qian, F., Villella, J., Wallace, P. K., Mhawech-Fauceglia, P., Tario, J. D., Jr., Andrews, C., Matsuzaki, J., Valmori, D., Ayyoub, M., Frederick, P. J., Beck, A., Liao, J., Cheney, R., Moysich, K., Lele, S., Shrikant, P., Old, L. J., Odunsi, K. (2009). Efficacy of levo-1-methyl tryptophan and dextro-1-methyl tryptophan in reversing indoleamine-2,3-dioxygenase-mediated arrest of T-cell proliferation in human epithelial ovarian cancer. Cancer Res. 69:5498–5504.
  • Quezada, S. A., Peggs, K. S., Simpson, T. R., Allison, J. P. (2011). Shifting the equilibrium in cancer immunoediting: from tumor tolerance to eradication. Immunol. Rev. 241:104–118.
  • Quezada, S. A., Peggs, K. S., Simpson, T. R., Shen, Y., Littman, D. R., Allison, J. P. (2008). Limited tumor infiltration by activated T effector cells restricts the therapeutic activity of regulatory T cell depletion against established melanoma. J. Exp. Med. 205:2125–2138.
  • Quintana, F. J., Basso, A. S., Iglesias, A. H., Korn, T., Farez, M. F., Bettelli, E., Caccamo, M., Oukka, M., Weiner, H. L. (2008). Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 453:65–71.
  • Ramakrishnan, R., Antonia, S., Gabrilovich, D. I. (2008). Combined modality immunotherapy and chemotherapy: a new perspective. Cancer Immunol. Immunother. 257:1523–1529.
  • Ratajczak, P., Janin, A., Peffault de Larour, R., Koch, L., Roche, B., Munn, D., Blazar, B. R., Socie, G. (2012). IDO in human gut graft-vs-host disease. Biol Blood Marrow Transplant. 18:150–155.
  • Ravishankar, B., Liu, H., Shinde, R., Chandler, P., Baban, B., Tanaka, M., Munn, D. H., Mellor, A. L., Karlsson, M. C., McGaha, T. L. (2012) Tolerance to apoptotic cells is regulated by indoleamine 2,3-dioxygenase. Proc. Natl. Acad. Sci. USA, in press.
  • Ribas, A., Comin-Anduix, B., Economou, J. S., Donahue, T. R., de la Rocha, P., Morris, L. F., Jalil, J., Dissette, V. B., Shintaku, I. P., Glaspy, J. A., Gomez-Navarro, J., Cochran, A. J. (2009). Intratumoral immune cell infiltrates, FoxP3, and indoleamine 2,3-dioxygenase in patients with melanoma undergoing CTLA4 blockade. Clin. Cancer Res. 15:390–399.
  • Rodriguez, P. C., Quiceno, D. G., Ochoa, A. C. (2007). L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109:1568–1573.
  • Romani, L., Fallarino, F., De Luca, A., Montagnoli, C., D’Angelo, C., Zelante, T., Vacca, C., Bistoni, F., Fioretti, M. C., Grohmann, U., Segal, B. H., Puccetti, P. (2008). Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature 451:211–215.
  • Rutella, S., Bonanno, G., Procoli, A., Mariotti, A., de Ritis, D. G., Curti, A., Danese, S., Pessina, G., Pandolfi, S., Natoni, F., Di Febo, A., Scambia, G., Manfredini, R., Salati, S., Ferrari, S., Pierelli, L., Leone, G., Lemoli, R. M. (2010). Hepatocyte growth factor favors monocyte differentiation into regulatory interleukin (IL)-10++IL-12low/neg accessory cells with dendritic-cell features. Blood 108:218–227.
  • Schreiber, H., Rowley, D. A. (2010). Cancer. Awakening immunity. Science 330:761–762.
  • Schreiber, R. D., Old, L. J., Smyth, M. J. (2011). Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570.
  • Sharma, M. D., Baban, B., Chandler, P., Hou, D. Y., Singh, N., Yagita, H., Azuma, M., Blazar, B. R., Mellor, A. L., Munn, D. H. (2007). Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J. Clin. Invest.117:2570–2582.
  • Sharma, M. D., Hou, D. Y., Baban, B., Koni, P. A., He, Y., Chandler, P. R., Blazar, B. R., Mellor, A. L., Munn, D. H. (2010). Reprogrammed foxp3(+) regulatory T cells provide essential help to support cross-presentation and CD8(+) T cell priming in naive mice. Immunity 33:942–954.
  • Sharma, M. D., Hou, D. Y., Liu, Y., Koni, P. A., Metz, R., Chandler, P., Mellor, A. L., He, Y., Munn, D. H. (2009). Indoleamine 2,3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes. Blood 113:6102–6111.
  • Shields, J. D., Kourtis, I. C., Tomei, A. A., Roberts, J. M., Swartz, M. A. (2010). Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science 328:749–752.
  • Soliman, H., Mediavilla-Varela, M., Antonia, S. (2010). Indoleamine 2,3-dioxygenase: is it an immune suppressor? Cancer J. 16:354–359.
  • Soliman, H. H., Antonia, S. J., Sullivan, D., Vanahanian, N., Link, C. (2009). Overcoming tumor antigen anergy in human malignancies using the novel indeolamine 2,3-dioxygenase (IDO) enzyme inhibitor, 1-methyl-D-tryptophan (1MT). J. Clin. Oncol. 27:3004.
  • Sotomayor, E. M., Borrello, I., Rattis, F. M., Cuenca, A. G., Abrams, J., Staveley-O’Carroll, K., Levitsky, H. I. (2001). Cross-presentation of tumor antigens by bone marrow-derived antigen-presenting cells is the dominant mechanism in the induction of T-cell tolerance during B-cell lymphoma progression. Blood 98:1070–1077.
  • Spiotto, M. T., Yu, P., Rowley, D. A., Nishimura, M. I., Meredith, S. C., Gajewski, T. F., Fu, Y. X., Schreiber, H. (2002). Increasing tumor antigen expression overcomes “ignorance” to solid tumors via crosspresentation by bone marrow-derived stromal cells. Immunity 17:737–747.
  • Stone, T. W., Darlington, L. G. (2002). Endogenous kynurenines as targets for drug discovery and development. Nat. Rev. Drug Discov. 1:609–620.
  • Sugimoto, H., Oda, S., Otsuki, T., Hino, T., Yoshida, T., Shiro, Y. (2006). Crystal structure of human indoleamine 2,3-dioxygenase: catalytic mechanism of O2 incorporation by a heme-containing dioxygenase. Proc. Natl. Acad. Sci. USA 103:2611–2616.
  • Sundrud, M. S., Koralov, S. B., Feuerer, M., Calado, D. P., Kozhaya, A. E., Rhule-Smith, A., Lefebvre, R. E., Unutmaz, D., Mazitschek, R., Waldner, H., Whitman, M., Keller, T., Rao, A. (2009). Halofuginone inhibits TH17 cell differentiation by activating the amino acid starvation response. Science 2009;324:1334–1338.
  • Sung, V., Venkateshan, C. N., Williamson, L., Ward, R., Espey, M. G., Gibbs, C. J., Jr., Moffett, J. R., Namboodiri, M. A. (1997). Immuno-electron microscopy reveals that the excitotoxin quinolinate is associated with the plasma membrane in human peripheral blood monocytes/macrophages. Cell Tissue Res. 290:633–639.
  • Swanson, K. A., Zheng, Y., Heidler, K. M., Mizobuchi, T., Wilkes, D. S. (2004). CDllc+ cells modulate pulmonary immune responses by production of indoleamine 2,3-dioxygenase. Am. J. Respir. Cell Mol. Biol. 30:311–318.
  • Tas, S. W., Vervoordeldonk, M. J., Hajji, N., Schuitemaker, J. H., van der Sluijs, K. F., May, M. J., Ghosh, S., Kapsenberg, M. L., Tak, P. P., de Jong, E. C. (2007). Noncanonical NF-kappaB signaling in dendritic cells is required for indoleamine 2,3-dioxygenase (IDO) induction and immune regulation. Blood 110:1540–1549.
  • Taylor, M. W., Feng, G. S. (1991). Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J. 5:2516–2522.
  • Terness, P., Chuang, J. J., Bauer, T., Jiga, L., Opelz, G. (2005). Regulation of human auto- and alloreactive T cells by indoleamine 2,3-dioxygenase (IDO)-producing dendritic cells: too much ado about IDO? Blood 105:2480–2486.
  • Thebault, P., Condamine, T., Heslan, M., Hill, M., Bernard, I., Saoudi, A., Josien, R., Anegon, I., Cuturi, M. C., Chiffoleau, E. (2007). Role of IFNgamma in allograft tolerance mediated by CD4+CD25+ regulatory T cells by induction of IDO in endothelial cells. Am. J. Transplant. 7:2472–2482.
  • Thomas, S. M., Garrity, L. F., Brandt, C. R., Schobert, C. S., Feng, G. S., Taylor, M. W., Carlin, J. M., Byrne, G. I. (1993). IFN-gamma-mediated antimicrobial response. Indoleamine 2,3-dioxygenase-deficient mutant host cells no longer inhibit intracellular Chlamydia spp. or Toxoplasma growth. J. Immunol. 150:5529–5534.
  • Uyttenhove, C., Pilotte, L., Theate, I., Stroobant, V., Colau, D., Parmentier, N., Boon, T., Van den Eynde, B. J. (2003). Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med. 9:1269–1274.
  • Vacca, C., Fallarino, F., Perruccio, K., Orabona, C., Bianchi, R., Gizzi, S., Velardi, A., Fioretti, M.C., Puccetti, P., Grohmann, U. (2005). CD40 ligation prevents onset of tolerogenic properties in human dendritic cells treated with CTLA-4-Ig. Microbes Infect. 7:1040–1048.
  • van der Marel, A. P., Samsom, J. N., Greuter, M., van Berkel, L. A., O’Toole, T., Kraal, G., Mebius, R. E. (2007). Blockade of IDO inhibits nasal tolerance induction. J. Immunol. 179:894–900.
  • Vence, L., Palucka, A. K., Fay, J. W., Ito, T., Liu, Y. J., Banchereau, J., Ueno, H. (2007). Circulating tumor antigen-specific regulatory T cells in patients with metastatic melanoma. Proc Natl Acad Sci U S A 104:20884–20889.
  • Vogel, C. F., Goth, S. R., Dong, B., Pessah, I. N., Matsumura, F. (2008). Aryl hydrocarbon receptor signaling mediates expression of indoleamine 2,3-dioxygenase. Biochem. Biophys. Res. Commun. 375:331–335.
  • von Bergwelt-Baildon, M. S., Popov, A., Saric, T., Chemnitz, J., Classen, S., Stoffel, M. S., Fiore, F., Roth, U., Beyer, M., Debey, S., Wickenhauser, C., Hanisch, F. G., Schultze, J. L. (2006). CD25 and indoleamine 2,3-dioxygenase are up-regulated by prostaglandin E2 and expressed by tumor-associated dendritic cells in vivo: additional mechanisms of T-cell inhibition. Blood 108:228–237.
  • Wek, R. C., Jiang, H. Y., Anthony, T. G. (2006). Coping with stress: eIF2 kinases and translational control. Biochem. Soc. Trans. 34:7–11.
  • Williams, K. M., Hakim, F. T. (2007). Gress RE. T cell immune reconstitution following lymphodepletion. Semin. Immunol. 19:318–330.
  • Willimsky, G., Blankenstein, T. (2005). Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature 437:141–146.
  • Willimsky, G., Czeh, M., Loddenkemper, C., Gellermann, J., Schmidt, K., Wust, P., Stein, H., Blankenstein, T. (2008). Immunogenicity of premalignant lesions is the primary cause of general cytotoxic T lymphocyte unresponsiveness. J. Exp. Med. 205:1687–1700.
  • Witkiewicz, A., Williams, T. K., Cozzitorto, J., Durkan, B., Showalter, S. L., Yeo, C. J., Brody, J. R. (2008). Expression of indoleamine 2,3-dioxygenase in metastatic pancreatic ductal adenocarcinoma recruits regulatory T cells to avoid immune detection. J. Am. Coll. Surg. 206:849–854; discussion 854–6.
  • Witkiewicz, A. K., Costantino, C. L., Metz, R., Muller, A. J., Prendergast, G. C., Yeo, C. J., Brody, J. R. (2009). Genotyping and expression analysis of IDO2 in human pancreatic cancer: a novel, active target. J. Am. Coll. Surg. 208:781–787; discussion 787–789.
  • Wobser, M., Voigt, H., Houben, R., Eggert, A. O., Freiwald, M., Kaemmerer, U., Kaempgen, E., Schrama, D., Becker, J. C. (2007). Dendritic cell based antitumor vaccination: impact of functional indoleamine 2,3-dioxygenase expression. Cancer Immunol. Immunother. 56:1017–1024.
  • Yan, M. L., Wang, Y. D., Tian, Y. F., Lai, Z. D., Yan, L. N. (2010a). Inhibition of allogeneic T-cell response by Kupffer cells expressing indoleamine 2,3-dioxygenase. World J. Gastroenterol. 16:636–640.
  • Yan, Y., Zhang, G. X., Gran, B., Fallarino, F., Yu, S., Li, H., Cullimore, M. L., Rostami, A., Xu, H. (2010b). IDO upregulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis. J. Immunol. 185:5953–5961.
  • Yu, J., Sun, J., Wang, S. E., Li, H., Cao, S., Cong, Y., Liu, J., Ren, X. (2011). Upregulated expression of indoleamine 2, 3-dioxygenase in primary breast cancer correlates with increase of infiltrated regulatory T cells in situ and lymph node metastasis. Clin. Dev. Immunol. 2011:1–10.
  • Yu, P., Lee, Y., Liu, W., Krausz, T., Chong, A., Schreiber, H., Fu, Y. X. (2005). Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors. J. Exp. Med. 201:779–791.
  • Yuan, W., Collado-Hidalgo, A., Yufit, T., Taylor, M., Varga, J. (1998). Modulation of cellular tryptophan metabolism in human fibroblasts by transforming growth factor-beta: selective inhibition of indoleamine 2,3-dioxygenase and tryptophanyl-tRNA synthetase gene expression. J. Cell Physiol. 177:174–186.
  • Yue, E. W., Douty, B., Wayland, B., Bower, M., Liu, X., Leffet, L., Wang, Q., Bowman, K. J., Hansbury, M. J., Liu, C., Wei, M., Li, Y., Wynn, R., Burn, T. C., Koblish, H. K., Fridman, J. S., Metcalf, B., Scherle, P. A., Combs, A. P. (2009). Discovery of potent competitive inhibitors of indoleamine 2,3-dioxygenase with in vivo pharmacodynamic activity and efficacy in a mouse melanoma model. J. Med. Chem. 52:7364–7367.
  • Zhang, B., Bowerman, N. A., Salama, J. K., Schmidt, H., Spiotto, M. T., Schietinger, A., Yu, P., Fu, Y. X., Weichselbaum, R. R., Rowley, D. A., Kranz, D. M., Schreiber, H. (2007). Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J. Exp. Med. 204:49–55.
  • Zhang, G., Liu, W. L., Zhang, L., Wang, J. Y., Kuang, M. H., Liu, P., Lin, Y. H., Dai, S. Q., Du, J. (2011). Involvement of indoleamine 2,3-dioxygenase in impairing tumor-infiltrating CD8 T-cell functions in esophageal squamous cell carcinoma. Clin. Dev. Immunol. 2011:1–12.
  • Zhou, G., Drake, C. G., Levitsky, H. I. (2006). Amplification of tumor-specific regulatory T cells following therapeutic cancer vaccines. Blood 107:628–636.
  • Zitvogel, L., Apetoh, L., Ghiringhelli, F., Andre, F., Tesniere, A., Kroemer, G. (2008a). The anticancer immune response: indispensable for therapeutic success? J. Clin. Invest. 118:1991–2001.
  • Zitvogel, L., Apetoh, L., Ghiringhelli, F., Kroemer, G. (2008b). Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 8:59–73.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.