Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 41, 2012 - Issue 6-7
557
Views
34
CrossRef citations to date
0
Altmetric
Research Article

Myeloid-derived Suppressor Cells Adhere to Physiologic STAT3- vs STAT5-dependent Hematopoietic Programming, Establishing Diverse Tumor-Mediated Mechanisms of Immunologic Escape

, , , , , , , , , , , , & show all
Pages 680-710 | Published online: 27 Sep 2012

REFERENCES

  • Almand, B., Clark, J. I., (2001). Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J. Immunol. 166(1): 678–689.
  • Bingisser, R. M., Tilbrook, P. A., (1998). Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway. J. Immunol. 160(12): 5729–5734.
  • Bose, A., Taylor, J. L., (2011). Sunitinib facilitates the activation and recruitment of therapeutic anti-tumor immunity in concert with specific vaccination. Int J Cancer
  • Bronte, V., Serafini, P., (2003). IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J. Immunol. 170(1): 270–278.
  • Brossart, P., Stuhler, G., (1998). Her-2/neu-derived peptides are tumor-associated antigens expressed by human renal cell and colon carcinoma lines and are recognized by in vitro induced specific cytotoxic T lymphocytes. Cancer Res. 58(4): 732–736.
  • Brugarolas, J. (2007). Renal-cell carcinoma–molecular pathways and therapies. N. Engl. J. Med. 356(2): 185–187.
  • Brune, B., Gotz, C., (1997). Superoxide formation and macrophage resistance to nitric oxide-mediated apoptosis. J. Biol. Chem. 272(11): 7253–7258.
  • Chklovskaia, E., Jansen, W., (1999). Mechanism of flt3 ligand expression in bone marrow failure: translocation from intracellular stores to the surface of T lymphocytes after chemotherapy-induced suppression of hematopoiesis. Blood 93(8): 2595–2604.
  • Cohen, P. A., Koski, G. K., (2008). STAT3- and STAT5-dependent pathways competitively regulate the pan-differentiation of CD34pos cells into tumor-competent dendritic cells. Blood 112(5): 1832–1843.
  • Corzo, C. A., Cotter, M. J., (2009). Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J. Immunol. 182(9): 5693–5701.
  • Dolcetti, L., Peranzoni, E., (2010). Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur. J. Immunol. 40(1): 22–35.
  • Dolganiuc, A., Paek, E., (2008). Myeloid dendritic cells of patients with chronic HCV infection induce proliferation of regulatory T lymphocytes. Gastroenterology 135(6): 2119–2127.
  • Duhe, R. J., Evans, G. A., (1998). Nitric oxide and thiol redox regulation of Janus kinase activity. Proc. Natl. Acad. Sci. USA 95(1): 126–131.
  • Eardley, D. D., Gershon, R. K. (1976). Induction of specific suppressor T cells in vitro. J. Immunol. 117(1): 313–318.
  • Esashi, E., Wang, Y. H., (2008). The signal transducer STAT5 inhibits plasmacytoid dendritic cell development by suppressing transcription factor IRF8. Immunity 28(4): 509–520.
  • Fainaru, O., Hantisteanu, S., (2011). Immature myeloid cells accumulate in mouse placenta and promote angiogenesis. Am. J. Obstet. Gynecol. 204(6): 544 e18–23.
  • Filipazzi, P., Valenti, R., (2007). Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J. Clin. Oncol. 25(18): 2546–2553.
  • Finke, J., Ferrone, S., (1999). Where have all the T cells gone? Mechanisms of immune evasion by tumors. Immunol. Today 20(4): 158–160.
  • Finke, J. H., Rayman, P., (1990). Characterization of the cytolytic activity of CD4+ and CD8+ tumor-infiltrating lymphocytes in human renal cell carcinoma. Cancer Res. 50(8): 2363–2370.
  • Finke, J. H., B. Rini, (2008). Sunitinib reverses type-1 immune suppression and decreases T-regulatory cells in renal cell carcinoma patients. Clin. Cancer Res. 14(20): 6674–6682.
  • Gabrilovich, D. I., S. Nagaraj (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9(3): 162–174.
  • Garcia, J. A. Rini, B. A. (2007). Recent progress in the management of advanced renal cell carcinoma. CA Cancer J. Clin. 57(2): 112–125.
  • Gershon, R. K., Eardley, D. D., (1976). Functional inactivation of suppressor T cells by heat-killed macrophages. Nature 262(5565): 216–217.
  • Ghiringhelli, F., Puig, P. E., (2005). Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J. Exp. Med. 202(7): 919–929.
  • Heng, D. Y., Bukowski, R. M. (2008). Anti-angiogenic targets in the treatment of advanced renal cell carcinoma. Curr Cancer Drug Targets 8(8): 676–62.
  • Heng, D. Y., Chi, K. N., (2009). A population-based study evaluating the impact of sunitinib on overall survival in the treatment of patients with metastatic renal cell cancer. Cancer 115(4): 776–783.
  • Hesse, M., Modolell, M., (2001). Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. J. Immunol. 167(11): 6533–6544.
  • Hipp, M. M., Hilf, N., (2008). Sorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses. Blood 111(12): 5610–5620.
  • Hoechst, B., Ormandy, L. A., (2008). A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 135(1): 234–243.
  • Hu, S. K., Eardley, D. D., (1983). Definition of two pathways for generation of suppressor T-cell activity. Proc. Natl. Acad. Sci. USA 80(12): 3779–3781.
  • Huang, B., Pan, P. Y., (2006). Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 66(2): 1123–1131.
  • Jemal, A., Siegel, R., (2007). Cancer statistics, 2007. CA Cancer J. Clin. 57(1): 43–66.
  • Kaelin, W. G., Jr. (2007). The von Hippel-Lindau tumor suppressor protein and clear cell renal carcinoma. Clin. Cancer Res. 13(2 Pt 2): 680s–684s.
  • Kerbel, R. S. (2005). Therapeutic implications of intrinsic or induced angiogenic growth factor redundancy in tumors revealed. Cancer Cell 8(4): 269–271.
  • Klapper, J. A., Downey, S. G., (2008). High-dose interleukin-2 for the treatment of metastatic renal cell carcinoma: a retrospective analysis of response and survival in patients treated in the surgery branch at the National Cancer Institute between 1986 and 2006. Cancer 113(2): 293–301.
  • Kmieciak, M., Gowda, M., (2009). Human T cells express CD25 and Foxp3 upon activation and exhibit effector/memory phenotypes without any regulatory/suppressor function. J. Transl. Med. 7: 89.
  • Ko, J. S., Rayman, P., (2010). Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained. Cancer Res. 70(9): 3526–3536.
  • Ko, J. S., Zea, A. H., (2009). Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin. Cancer Res. 15(6): 2148–2157.
  • Korn, T., Oukka, M. (2007). Dynamics of antigen-specific regulatory T-cells in the context of autoimmunity. Semin. Immunol. 19(4): 272–278.
  • Kusmartsev, S., Eruslanov, E., (2008). Oxidative stress regulates expression of VEGFR1 in myeloid cells: link to tumor-induced immune suppression in renal cell carcinoma. J. Immunol. 181(1): 346–353.
  • Lee, J. M., Seo, J. H., (2011). The restoration of myeloid-derived suppressor cells as functional antigen-presenting cells by NKT cell help and all-trans-retinoic acid treatment. Int. J. Cancer.
  • Linehan, W. M., Zbar, B. (2004). Focus on kidney cancer. Cancer Cell 6(3): 223–228.
  • MacDonald, K. P., Rowe, V., (2005). Cytokine expanded myeloid precursors function as regulatory antigen-presenting cells and promote tolerance through IL-10-producing regulatory T cells. J. Immunol. 174(4): 1841–1850.
  • Mahdipour, E., Charnock, J. C., (2011). Hoxa3 promotes the differentiation of hematopoietic progenitor cells into proangiogenic Gr-1+CD11b+ myeloid cells. Blood 117(3): 815–826.
  • Marigo, I., Dolcetti, L., (2008). Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev. 222: 162–179.
  • Miller, K. D., Sweeney, C. J., (2005). Can tumor angiogenesis be inhibited without resistance? Experientia. (94): 95–112.
  • Mirza, N., Fishman, M. (2006). All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res. 66(18): 9299–9307.
  • Motzer, R. J., Hutson, T. E., (2007). Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 356(2): 115–124.
  • Motzer, R. J., Michaelson, M. D., (2006). Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 24(1): 16–24.
  • Movahedi, K., Guilliams, M., (2008). Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111(8): 4233–4244.
  • Muranski, P., Boni, A., (2008). Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood 112(2): 362–373.
  • Nagaraj, S., Nelson, A., (2012). Antigen-specific CD4(+) T cells regulate function of myeloid-derived suppressor cells in cancer via retrograde MHC class II signaling. Cancer Res. 72(4): 928–938.
  • Nayak, S., Cao, O., (2009). Prophylactic immune tolerance induced by changing the ratio of antigen-specific effector to regulatory T cells. J. Thromb. Haemost. 7(9): 1523–1532.
  • Nelson, E. A., Walker, S. R., (2011). The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors. Blood 117(12): 3421–3429.
  • Neumann, E., Engelsberg, A., (1998). Heterogeneous expression of the tumor-associated antigens RAGE-1, PRAME, and glycoprotein 75 in human renal cell carcinoma: candidates for T-cell-based immunotherapies? Cancer Res. 58(18): 4090–4095.
  • Ochoa, A. C., Zea, A. H., (2007). Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin. Cancer Res. 13(2 Pt 2): 721s–726s.
  • Onishi, T., Ohishi, Y., (1999). An assessment of the immunological environment based on intratumoral cytokine production in renal cell carcinoma. BJU International. 83(4): 488–492.
  • Ostrand-Rosenberg, S., Clements, V. K., (2002). Resistance to metastatic disease in STAT6-deficient mice requires hemopoietic and nonhemopoietic cells and is IFN-gamma dependent. J. Immunol. 169(10): 5796–5804.
  • Ozao-Choy, J., Ma, G., (2009). The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res. 69(6): 2514–2522.
  • Page, B. D., Khoury, H., (2012). Small molecule STAT5-SH2 domain inhibitors exhibit potent antileukemia activity. J. Med. Chem. 55(3): 1047–1055.
  • Pan, P. Y., Ma, G., (2010). Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Res. 70(1): 99–108.
  • Pardoll, D. M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12(4): 252–264.
  • Pardoll, D. M., Topalian, S. L. (1998). The role of CD4+ T cell responses in antitumor immunity. Curr. Opin. Immunol. 10(5): 588–594.
  • Powell, D. J., Jr., Parker, L. L., (2005). Large-scale depletion of CD25+ regulatory T cells from patient leukapheresis samples. J. Immunother. 28(4): 403–411.
  • Puisieux, I., Bain, C., (1996). Restriction of the T-cell repertoire in tumor-infiltrating lymphocytes from nine patients with renal-cell carcinoma. Relevance of the CDR3 length analysis for the identification of in situ clonal T-cell expansions. Int. J. Cancer 66(2): 201–208.
  • Rodriguez, P. C., Ernstoff, M. S., (2009). Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res. 69(4): 1553–1560.
  • Rodriguez, P. C., Hernandez, C. P., (2005). Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J. Exp. Med. 202(7): 931–939.
  • Rodriguez, P. C., Quiceno, D. G., (2007). L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109(4): 1568–1573.
  • Rodriguez, P. C., Quiceno, D. G., (2004). Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res. 64(16): 5839–5849.
  • Rodriguez, P. C., Zea, A. H., (2003). L-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes. J. Immunol. 171(3): 1232–1239.
  • Roskoski, R., Jr. (2007). Sunitinib: a VEGF and PDGF receptor protein kinase and angiogenesis inhibitor. Biochem. Biophys. Res. Commun. 356(2): 323–328.
  • Schendel, D. J., Gansbacher, B., (1993). Tumor-specific lysis of human renal cell carcinomas by tumor-infiltrating lymphocytes. I. HLA-A2-restricted recognition of autologous and allogeneic tumor lines. J. Immunol. 151(8): 4209–4220.
  • Schmielau, J., Finn, O. J. (2001). Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res. 61(12): 4756–4760.
  • Schwartz, A., Gershon, R. K. (1984). Regulation of in vitro cytotoxic T lymphocyte generation. III. Interactions or regulatory T cell subsets in suppressor and target populations. J. Mol. Cell Immunol. 1(4): 237–252.
  • Serafini, P., Carbley, R., (2004). High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res. 64(17): 6337–6343.
  • Serafini, P., Mgebroff, S., (2008). Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res. 68(13): 5439–5449.
  • Sinha, P., Clements, V. K., (2007). Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J. Immunol. 179(2): 977–983.
  • Sinha, P., Clements, V. K., (2005). Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J. Immunol. 174(2): 636–645.
  • Smith, F. O., Downey, S. G., (2008). Treatment of metastatic melanoma using interleukin-2 alone or in conjunction with vaccines. Clin. Cancer Res. 14(17): 5610–5618.
  • Solito, S., Bronte, V., (2011). Antigen specificity of immune suppression by myeloid-derived suppressor cells. J. Leukoc. Biol. 90(1): 31–36.
  • Steffens, M. G., J. C. Oosterwijk-Wakka, (1999). Immunohistochemical analysis of tumor antigen saturation following injection of monoclonal antibody G250. Anticancer Res. 19(2A): 1197–1200.
  • Takaba, J., Mishima, V., Role of bone marrow-derived monocytes/macrophages in the repair of mucosal damage caused by irradiation and/or anticancer drugs in colitis model. Mediators Inflamm. 2010: 634145.
  • Talmadge, J. E. (2007). Pathways mediating the expansion and immunosuppressive activity of myeloid-derived suppressor cells and their relevance to cancer therapy. Clin. Cancer Res. 13(18 Pt 1): 5243–5248.
  • Tatsumi, T., Herrem, C. J., (2003). Disease stage variation in CD4+ and CD8+ T-cell reactivity to the receptor tyrosine kinase EphA2 in patients with renal cell carcinoma. Cancer Res. 63(15): 4481–4489.
  • Tatsumi, T., Kierstead, L. S., (2002). Disease-associated bias in T helper type 1 (Th1)/Th2 CD4(+) T cell responses against MAGE-6 in HLA-DRB10401(+) patients with renal cell carcinoma or melanoma. J. Exp. Med. 196(5): 619–628.
  • Toes, R. E., Ossendorp, F., (1999). CD4 T cells and their role in antitumor immune responses. J Exp. Med. 189(5): 753–756.
  • Troy, A. J., Summers, K. L., (1998). Minimal recruitment and activation of dendritic cells within renal cell carcinoma. Clin Cancer Res 4(3): 585–593.
  • Uzzo, R. G., Rayman, P., (1999). Mechanisms of apoptosis in T cells from patients with renal cell carcinoma. Clin. Cancer Res. 5(5):1219–1229.
  • Wang, Z., Davies, J. D. (2007). CD8 blockade promotes the expansion of antigen-specific CD4+ FOXP3+ regulatory T cells in vivo. Int. Immunopharmacol. 7(2): 249–265.
  • Watanabe, S., Deguchi, K., (2008). Tumor-induced CD11b+Gr-1+ myeloid cells suppress T cell sensitization in tumor-draining lymph nodes. J. Immunol. 181(5): 3291–3300.
  • Xin, H., Zhang, C., (2009). Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res. 69(6): 2506–2513.
  • Yao, Q., Nishiuchi, R., (2005). Human leukemias with mutated FLT3 kinase are synergistically sensitive to FLT3 and Hsp90 inhibitors: the key role of the STAT5 signal transduction pathway. Leukemia 19(9): 1605–1612.
  • Youn, J. I., Nagaraj, S., (2008). Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J. Immunol. 181(8): 5791–5802.
  • Zea, A. H., Rodriguez, P. C., (2005). Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res. 65(8): 3044–3048.
  • Zhang, B., Jia, H., (2010). Depletion of regulatory T cells facilitates growth of established tumors: a mechanism involving the regulation of myeloid-derived suppressor cells by lipoxin A4. J. Immunol. 185(12): 7199–7206.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.