Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 44, 2015 - Issue 1
256
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

IL-23 Plasma level measurement in relapsing remitting multiple sclerosis (RRMS) patients compared to healthy subjects

, , , , , & show all

References

  • Awasthi A, Riol-Blanco L, Jager A, et al. (2009). Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells. J Immunol, 182, 5904–8
  • Bastos KR, de Deus Vieira de Moraes L, Zago CA, et al. (2005). Analysis of the activation profile of dendritic cells derived from the bone marrow of interleukin-12/interleukin-23-deficient mice. Immunology, 114, 499–506
  • Beadling C, Slifka MK. (2006). Regulation of innate and adaptive immune responses by the related cytokines IL-12, IL-23, and IL-27. Arch Immunol Ther Exp (Warsz), 54, 15–24
  • Belladonna ML, Renauld JC, Bianchi R, et al. (2002). IL-23 and IL-12 have overlapping, but distinct, effects on murine dendritic cells. J Immunol, 168, 5448–54
  • Bornsen L, Khademi M, Olsson T, et al. (2011). Osteopontin concentrations are increased in cerebrospinal fluid during attacks of multiple sclerosis. Mult Scler, 17, 32–42
  • Braitch M, Nunan R, Niepel G, et al. (2008). Increased osteopontin levels in the cerebrospinal fluid of patients with multiple sclerosis. Arch Neurol, 65, 633–5
  • Chen YC, Chen SD, Miao L, et al. (2012). Serum levels of interleukin (IL)-18, IL-23 and IL-17 in Chinese patients with multiple sclerosis. J Neuroimmunol, 243, 56–60
  • Chiocchetti A, Comi C, Indelicato M, et al. (2005). Osteopontin gene haplotypes correlate with multiple sclerosis development and progression. J Neuroimmunol, 163, 172–8
  • Comabella M, Pericot I, Goertsches R, et al. (2005). Plasma osteopontin levels in multiple sclerosis. J Neuroimmunol, 158, 231–9
  • Compston A, Coles A. (2008). Multiple sclerosis. Lancet, 372, 1502–17
  • Cua DJ, Sherlock J, Chen Y, et al. (2003). Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature, 421, 744–8
  • Etemadifar M, Abtahi SH. (2012). Multiple sclerosis in Isfahan, Iran: Past, Present and Future. Int J Prev Med, 3, 301--2
  • Etemadifar M, Abtahi SH, Akbari M, et al. (2014). Multiple sclerosis in Isfahan, Iran: an update. Mult Scler, 20, 1145--8
  • Etemadifar M, Maghzi AH. (2011). Sharp increase in the incidence and prevalence of multiple sclerosis in Isfahan, Iran. Mult Scler, 17, 1022--7
  • Etemadifar M, Sajjadi S, Nasr Z, et al. (2013). Epidemiology of multiple sclerosis in Iran: a systematic review. Eur Neurol, 70, 356--63
  • Gerosa F, Baldani-Guerra B, Lyakh LA, et al. (2008). Differential regulation of interleukin 12 and interleukin 23 production in human dendritic cells. J Exp Med, 205, 1447–61
  • Ghoreschi K, Laurence A, Yang XP, et al. (2010). Generation of pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature, 467, 967–71
  • Goldberg M, Nadiv N, Luknar-Gabor O, et al. (2009). Synergism between tumor necrosis factor alpha and interleukin-17 to induce IL-23 p19 expression in fibroblast-like synoviocytes. Mol Immunol, 46, 1854–9
  • Gran B, Zhang GX, Yu S, et al. (2002). IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J Immunol, 169, 7104–10
  • Iwakura Y, Ishigame H. (2006). The IL-23/IL-17 axis in inflammation. J Clin Invest, 116, 1218–22
  • Kikly K, Liu L, Na S, Sedgwick JD. (2006). The IL-23/Th(17) axis: therapeutic targets for autoimmune inflammation. Curr Opin Immunol, 18, 670–5
  • Kopp T, Lenz P, Bello-Fernandez C, et al. (2003). IL-23 production by cosecretion of endogenous p19 and transgenic p40 in keratin 14/p40 transgenic mice: evidence for enhanced cutaneous immunity. J Immunol, 170, 5438–44
  • Krakauer M, Sorensen P, Khademi M, et al. (2008). Increased IL-10 mRNA and IL-23 mRNA expression in multiple sclerosis: interferon-beta treatment increases IL-10 mRNA expression while reducing IL-23 mRNA expression. Mult Scler, 14, 622–30
  • Langrish CL, Chen Y, Blumenschein WM, et al. (2005). IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med, 201, 233–40
  • Langrish CL, McKenzie BS, Wilson NJ, et al. (2004). IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol Rev, 202, 96–105
  • Lankford CS, Frucht DM. (2003). A unique role for IL-23 in promoting cellular immunity. J Leukoc Biol, 73, 49–56
  • Liao JJ, Huang MC, Goetzl EJ. (2007). Cutting edge: Alternative signaling of Th17 cell development by sphingosine 1-phosphate. J Immunol, 178, 5425–8
  • Lovett-Racke AE, Yang Y, Racke MK. (2011). Th1 versus Th17: are T cell cytokines relevant in multiple sclerosis? Biochim Biophys Acta, 1812, 246–51
  • Lupardus PJ, Garcia KC. (2008). The structure of interleukin-23 reveals the molecular basis of p40 subunit sharing with interleukin-12. J Mol Biol, 382, 931–41
  • Martin R, McFarland HF, McFarlin DE. (1992). Immunological aspects of demyelinating diseases. Annu Rev Immunol, 10, 153–87
  • McGeachy MJ, Chen Y, Tato CM, et al. (2009). The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol, 10, 314–24
  • McKenzie BS, Kastelein RA, Cua DJ. (2006). Understanding the IL-23-IL-17 immune pathway. Trends Immunol, 27, 17–23
  • Mills KH. (2008). Induction, function and regulation of IL-17-producing T cells. Eur J Immunol, 38, 2636–49
  • Moudgil KD, Choubey D. (2011). Cytokines in autoimmunity: role in induction, regulation, and treatment. J Interferon Cytokine Res, 31, 695–703
  • Oppmann B, Lesley R, Blom B, et al. (2000). Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity, 13, 715–25
  • Sospedra M, Martin R. (2005). Immunology of multiple sclerosis. Annu Rev Immunol, 23, 683–747
  • Stojanovic I, Cvjeticanin T, Lazaroski S, et al. (2009). Macrophage migration inhibitory factor stimulates interleukin-17 expression and production in lymph node cells. Immunology, 126, 74–83
  • Stritesky GL, Yeh N, Kaplan MH. (2008). IL-23 promotes maintenance but not commitment to the Th17 lineage. J Immunol, 181, 5948–55
  • Tang C, Chen S, Qian H, Huang W. (2012). Interleukin-23: As a drug target for autoimmune inflammatory diseases. Immunology, 135, 112–24
  • Vaknin-Dembinsky A, Murugaiyan G, Hafler DA, et al. (2008). Increased IL-23 secretion and altered chemokine production by dendritic cells upon CD46 activation in patients with multiple sclerosis. J Neuroimmunol, 195, 140–5
  • Weiner HL. (2004). Multiple sclerosis is an inflammatory T-cell-mediated autoimmune disease. Arch Neurol, 61, 1613–15
  • Wen SR, Liu GJ, Feng RN, et al. (2012). Increased levels of IL-23 and osteopontin in serum and cerebrospinal fluid of multiple sclerosis patients. J Neuroimmunol, 244, 94–6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.