135
Views
3
CrossRef citations to date
0
Altmetric
Research Article

The Role of Genetics in the Pathogenesis of Periocular Cutaneous Neoplasms: Implications for Targeted Therapy

, &
Pages 267-274 | Received 19 Apr 2013, Accepted 11 Jul 2013, Published online: 18 Oct 2013

References

  • Tsao H. Genetics of nonmelanoma skin cancer. Arch Dermatol 2001;137:1486–1492
  • Van Elsas A, Zerp SF, vander Flier S, et al. Relevance of ultraviolet-induced N-ras oncogene point mutations in development of primary human cutaneous melanoma. Am J Pathol 1996;149:883–893
  • Aszterbaum M, Rothman A, Johnson RL, et al. Identification of mutations in the human PATCHED gene in sporadic basal cell carcinomas and in patients with the basal cell nevus syndrome. J Invest Dermatol 1998;110:885–888
  • Iwasaki JK, Srivastava D, Moy RL, et al. The molecular genetics underlying basal cell carcinoma pathogenesis and links to targeted therapeutics. J Am Acad Dermatol 2010;66:e167–e178
  • Prabhakaran VC, Gupta A, Juilgol SC, Selva D. Basal cell carcinoma of the eyelids. Compr Ophthalmol Update 2007;8:1–14
  • Hahn H, Wicking C, Zaphiropoulous PG, et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 1996;85:841–851
  • Johnson RL, Rothman AL, Xie J, et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 1996;272:1668–1671
  • Tang JY. Elucidating the role of molecular signaling pathways in the tumorigenesis of basal cell carcinoma. Semin Cutan Med Surg 2011;30:S6–S9
  • Caro I, Low JA. The role of the hedgehog signaling pathway in the development of basal cell carcinoma and opportunities for treatment. Clin Cancer Res 2010;16:3335–3359
  • De Zwaan SE, Haass NK. Genetics of basal cell carcinoma. Australas J Dermatol 2010;51:81–94
  • Black GCM, Mazerolle CJ, Wang Y, et al. Abnormalities of the vitreoretinal interface caused by dysregulated hedgehog signaling during retinal development. Human Molecular Genetics 2003;12:3269–3276
  • US Food and Drug Administration. FDA approves new treatment for most common type of skin cancer [News Release]. Available at: www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm289545.htm
  • Sekulic A, Migden MR, Oro AE, et al. Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med 2012;366:2171–2179
  • Tang JY, Mackay-Wiggan JM, Aszterbaum M, et al. Inhibiting the hedgehog pathway in patients with the basal-cell nevus syndrome. N Engl J Med 2012;366:2180–2188
  • Kim J, Aftab BT, Tang JY, et al. Itraconazole and arsenic trioxide inhibit hedgehog pathway activation and tumor growth associated with acquired resistance to smoothened antagonists. Cancer Cell 2013;23:23–34
  • Lane DP. Cancer: P53, guardian of the genome. Nature 1992;358:15–16
  • Valverde P, Healy E, Jackson I, et al. Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nat Genet 1995;11:328–330
  • Abdel-Malek ZA. Development of a-melanocortin analogs for melanoma prevention and targeting. Adv Exp Med Biol 2010;681:126–132
  • Nindl I, Rosl F. Molecular pathogenesis of squamous cell carcinoma. Cancer Treat Res 2009;146:205–211
  • Brash DE, Rudoph JA, Simon JA, et al. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci U S A 1991; 88:10124–10128
  • Ziegler A, Jonason AS, Leffell DJ, et al. Sunburn and p53 in the onset of skin cancer. Nature 1994;372:773–776
  • Spencer JM, Kahn SM, Jiang W, et al. Activated ras genes occur in human actinic keratoses, premalignant precursors to squamous cell carcinomas. Arch Dermatol 1995;131:796–800
  • Hunt JL, Barnes L, Lewis JS Jr, et al. Molecular diagnostic alterations in squamous cell carcinoma of the head and neck and potential diagnostic applications. Eur Arch Otorhinolaryngol 2013 Mar 7; [Epub ahead of print]
  • Uribe P, Gonzalez S. Epidermal growth factor receptor (EGFR) and squamous cell carcinoma of the skin: molecular bases for EGFR-targeted therapy. Pathol Res Pract 2011;207:337–342
  • Ch’ng S, Low I, Ng D, et al. Epidermal growth factor receptor: A novel biomarker for aggressive head and neck cutaneous squamous cell carcinoma. Hum Pathol 2008;39:344–349
  • Wakeling AE, Guy SP, Woodburn JR, et al. ZD1839 (Iressa): An orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res 2002;62:5749–5754
  • Lewis CM, Glisson BS, Feng L, et al. A phase II study of gefitinib for aggressive cutaneous squamous cell carcinoma of the head and neck. Clin Cancer Res 2012;18:1435–1446
  • Moyer JD, Barbacci EG, Iwata KK, et al. Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res 1997;57:4838–4848
  • Yin VT, Pfeiffer ML, Esmaeli B. Targeted therapy for orbital and periocular basal cell carcinoma and squamous cell carcinoma. Ophthal Plast Reconstr Surg 2013;29:1–6
  • Maubec E, Petrow P, Scheer-Senyarich I, et al. Phase II study of cetuximab as first-line single-drug therapy in patients with unresectable squamous cell carcinoma of the skin. J Clin Oncol 2011;29:3419–3426
  • Shields JA, Shields CL. Sebaceous adenocarcinoma of the eyelid. Int Ophthalmol Clin 2009;49:45–61
  • Abbas O, Mahalingam M. Cutaneous sebaceous neoplasms as markers of Muir-Torre syndrome: A diagnostic algorithm. J Cutan Pathol 2009;36:613–619
  • Gaskin BJ, Fernando BS, Sullivan CA, et al. The significance of DNA mismatch repair genes in the diagnosis and management of periocular sebaceous cell carcinoma and Muir-Torre syndrome. Br J Ophthalmol 2011;95:1686–1690
  • Kiyosaki K, Nakada C, Hijiya N, et al. Analysis of p53 mutations and the expression of p53 and p21WAFI/CIP1 protein in 15 cases of sebaceous carcinoma of the eyelid. Invest Ophthalmol Vis Sci 2010;51:7–11
  • Kim N, Kim JE, Choung HK, et al. Expression of Shh and Wnt signaling pathway proteins in eyelid sebaceous gland carcinoma: Clinicopathologic study. Invest Ophthalmol Vis Sci 2013;54:370–377
  • Kumar A, Dorairaj SK, Prabhakaran VC, et al. Identification of genes assocated with tumorigenesis of meibomian cell carcinoma by microarray analysis. Genomics 2007;90:559–566
  • Sanchez R, Ivan D, Esmaeli B. Eyelid and periorbital cutaneous malignant melanoma. Int Ophthalmol Clin 2009;49:25–43
  • Gandini S, Sera F, Cattaruzza MS, et al. Meta-analysis of risk factors for cutaneous melanoma: III. Family history, actinic damage and phenotypic factors. Eur J Cancer 2005;41:2040–2059
  • Takata M, Murata H, Saida T. Molecular pathogenesis of malignant melanoma: A different perspective from the studies of melanocytic nevus and acral melanoma. Pigment Cell Melanoma Res 2010;23:64–71
  • Hussussian CJ, Struewing JP, Goldstein AM, et al. Germline p16 mutations in familial melanoma. Nat Genet 1994;8:15–21
  • Begg CB, Orlow I, Hummer AJ, et al. Lifetime risk of melanoma in CDKN2A mutation carriers in a population-based sample. J Natl Cancer Inst 2005;97:1507–1515
  • Tsao H, Chin L, Garraway LA, et al. Melanoma: From mutations to medicine. Genes Dev 2012;26:1131–1155
  • Carvajal RD, Antonescu CR, Wolchok JD, et al. KIT as a therapeutic target in metastatic melanoma. JAMA 2011;305:2327–2334
  • Guo J, Si L, Kong Y, Flaherty KT, et al. Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification. J Clin Oncol 2011;29:2904–2909
  • Boone B, Jacobs K, Ferdinande L. EGFR in melanoma: Clinical significance and potential therapeutic target. J Cutan Pathol 2011;38:492–502
  • Patel SP, Kim KB, Papadopoulos NE, et al. A phase II study of gefitinib in patients with metastatic melanoma. Melanoma Res 2011;21:357–363
  • Maldonado, JL, Fridlyand J, Patel H, et al. Determinants of BRAF mutations in primary melanomas. J Natl Cancer Inst 2003;95:1878–1890
  • Pollock PM, Harper UL, Hansen KS, et al. High frequency of BRAF mutations in nevi. Nat Genet 2003;33:19–20
  • Cohen Y, Goldenberg-Cohen N, Parrella P, et al. Lack of BRAF mutation in primary uveal melanoma. Invest Ophthalmol Vis Sci 2003;44:2876–2878
  • Palmieri G, Capone M, Ascierto ML, et al. Main roads to melanoma. J Transl Med 2009;14:86
  • Flaherty K, Puzanov I, Sosman J, et al. Phase I study of PLX4032: Proof of concept for V600E BRAF mutation as a therapeutic target in human cancer. J Clin Oncol 2009;27:15s
  • Solit DB, Garraway LA, Pratilas CA, et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 2006;439:358–362
  • Houben R, Schrama D, Becker JC. Molecular pathogenesis of Merkel cell carcinoma. Exp Dermatol 2009;18:193–198
  • Feng H, Shuda M, Chang Y, Moor PS. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 2008;319:1096–10100
  • Penn I, First MR. Merkel’s cell carcinoma in organ recipients: Report of 41 cases. Transplantation 1999;68:1717–1721
  • Shuda M, Feng H, Kwun HG, et al. T antigen mutations are a human tumor-specific signature for Merkel cell polyomavirus. Proc Natl Acad Sci U S A 2008;105:16272–16277
  • Sihto H, Kukko H, Koljonen V, et al. Clinical factors associated with Merkel cell polyomavirus infection in Merkel cell carcinoma. J Natl Cancer Inst 2009;101:938–945
  • Zeng Q, Gomez BP, Viscidi RP, et al. Development of a DNA vaccine targeting Merkel cell polyomavirus. Vaccine 2012;30:1322–1329

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.