432
Views
37
CrossRef citations to date
0
Altmetric
Research Article

The Genetic Basis of Incomitant Strabismus: Consolidation of the Current Knowledge of the Genetic Foundations of Disease

, &
Pages 427-437 | Received 30 Apr 2013, Accepted 11 Jul 2013, Published online: 18 Oct 2013

References

  • Laughlin RC. Congenital fibrosis of the extraocular muscles: A report of six cases. Am J Ophthalmol 1956;41(3):432–438
  • Hotchkiss MG, Miller NR, Clark AW, Green WR. Bilateral Duane's retraction syndrome: A clinical‐pathologic case report. Arch Ophthalmol 1980;98(5):870–874
  • Miller NR, Kiel SM, Green WR, Clark AW. Unilateral Duane's retraction syndrome (Type 1). Arch Ophthalmol 1982;100(9):1468–1472
  • Duane A. Congenital deficiency of abduction associated with impairment of adduction, retraction movements, contraction of the palpebral fissure and oblique movements of the eye. Arch Ophthalmol 1905;34:133–150
  • Appukuttan B, Gillanders E, Juo SH, et al. Localization of a gene for Duane retraction syndrome to chromosome 2q31. Am J Hum Genet 1999;65(6):1639–1646
  • Sevel D, Kassar BS. Bilateral Duane syndrome: Occurrence in three successive generations. Arch Ophthalmol 1974;91(6):492–494
  • Chung M, Stout JT, Borchert MS. Clinical diversity of hereditary Duane's retraction syndrome. Ophthalmol 2000;107(3):500–503
  • Evans JC, Frayling TM, Ellard S, Gutowski NJ. Confirmation of linkage of Duane's syndrome and refinement of the disease locus to an 8.8-cM interval on chromosome 2q31. Hum Genet 2000;106(6):636–638
  • Engle EC, Andrews C, Law K, Demer JL. Two pedigrees segregating Duane's retraction syndrome as a dominant trait map to the DURS2 genetic locus. Invest Ophthalmol Visual Sci 2007;48(1):189–193
  • Chan WM, Miyake N, Zhu-Tam L, et al. Two novel CHN1 mutations in 2 families with Duane retraction syndrome. Arch Ophthalmol 2011;129(5):649–652
  • Miyake N, Chilton J, Psatha M, et al. Human CHN1 mutations hyperactivate alpha2-chimaerin and cause Duane's retraction syndrome. Science 2008;321(5890):839–843
  • Miyake N, Demer JL, Shaaban S, et al. Expansion of the CHN1 strabismus phenotype. Invest Ophthalmol Visual Sci 2011;52(9):6321–6328
  • Demer JL, Clark RA, Lim KH, Engle EC. Magnetic resonance imaging evidence for widespread orbital dysinnervation in dominant Duane's retraction syndrome linked to the DURS2 locus. Invest Ophthalmol Visual Sci 2007;48(1):194–202
  • Murillo-Correa CE, Kon-Jara V, Engle EC, Zenteno JC. Clinical features associated with an I126M alpha2-chimaerin mutation in a family with autosomal-dominant Duane retraction syndrome. J AAPOS 2009;13(3):245–248
  • Miyake N, Andrews C, Fan W, et al. CHN1 mutations are not a common cause of sporadic Duane's retraction syndrome. Am J Med Genet Part A 2010;152A(1):215–217
  • Volk AE, Fricke J, Strobl J, et al. Analysis of the CHN1 gene in patients with various types of congenital ocular motility disorders. Graefe's Arch Clin Exp Ophthalmol 2010;248(9):1351–1357
  • Smith SB, Traboulsi EI. Duane syndrome in the setting of chromosomal duplications. Am J Ophthalmol 2010;150(6):932–938
  • Terhal P, Rosler B, Kohlhase J. A family with features overlapping Okihiro syndrome, hemifacial microsomia and isolated Duane anomaly caused by a novel SALL4 mutation. Am J Med Genet Part A 2006;140(3):222–226
  • Kohlhase J, Schubert L, Liebers M, et al. Mutations at the SALL4 locus on chromosome 20 result in a range of clinically overlapping phenotypes, including Okihiro syndrome, Holt-Oram syndrome, acro-renal-ocular syndrome, and patients previously reported to represent thalidomide embryopathy. J Med Genet 2003;40(7):473–478
  • Kohlhase J, Wischermann A, Reichenbach H, et al. Mutations in the SALL1 putative transcription factor gene cause Townes-Brocks syndrome. Nature Genet 1998;18(1):81–83
  • Barry JS, Reddy MA. The association of an epibulbar dermoid and Duane syndrome in a patient with a SALL1 mutation (Townes-Brocks Syndrome). Ophthalmic Genet 2008;29(4):177–180
  • Pizzuti A, Calabrese G, Bozzali M, et al. A peptidase gene in chromosome 8q is disrupted by a balanced translocation in a duane syndrome patient. Invest Ophthalmol Visual Sci 2002;43(12):3609–3612
  • Vincent C, Kalatzis V, Compain S, et al. A proposed new contiguous gene syndrome on 8q consists of Branchio-Oto-Renal (BOR) syndrome, Duane syndrome, a dominant form of hydrocephalus and trapeze aplasia: Implications for the mapping of the BOR gene. Hum Mol Genet 1994;3(10):1859–1866
  • Calabrese G, Stuppia L, Morizio E, et al. Detection of an insertion deletion of region 8q13-q21.2 in a patient with Duane syndrome: Implications for mapping and cloning a Duane gene. Eur J Hum Genet: EJHG 1998;6(3):187–193
  • Rickard S, Parker M, van't Hoff W, et al. Oto-facio-cervical (OFC) syndrome is a contiguous gene deletion syndrome involving EYA1: Molecular analysis confirms allelism with BOR syndrome and further narrows the Duane syndrome critical region to 1 cM. Hum Genet 2001;108(5):398–403
  • Lehman AM, Friedman JM, Chai D, et al. A characteristic syndrome associated with microduplication of 8q12, inclusive of CHD7. Eur J Medical Genet 2009;52(6):436–439
  • Amouroux C, Vincent M, Blanchet P, et al. Duplication 8q12: Confirmation of a novel recognizable phenotype with duane retraction syndrome and developmental delay. Eur J Hum Genet: EJHG 2012;20(5):580–583
  • Luo H, Xie L, Wang SZ, et al. Duplication of 8q12 encompassing CHD7 is associated with a distinct phenotype but without duane anomaly. Eur J Medical Genet 2012;55(11):646–649
  • Wettke-Schafer R, Kantner G. X-linked dominant inherited diseases with lethality in hemizygous males. Hum Genet 1983;64(1):1–23
  • Abu-Amero KK, Kondkar AA, Alorainy IA, et al. Xq26.3 Microdeletion in a male with Wildervanck Syndrome. Ophthalmic Genetics. Feb 1 2013, 1--7
  • Miller MT. Association of Duane retraction syndrome with craniofacial malformations. J Cran Genet Dev Biol Suppl 1985;1:273–282
  • Marshman WE, Schalit G, Jones RB, et al. Congenital anomalies in patients with Duane retraction syndrome and their relatives. J AAPOS 2000;4(2):106–109
  • Kothari M, Manurung F, Mithiya B. Simultaneous occurrence of duane retraction syndrome with marfan syndrome. Case Reports in Ophthalmol Medicine. 2011;2011:784259
  • Tischfield MA, Bosley TM, Salih MA, et al. Homozygous HOXA1 mutations disrupt human brainstem, inner ear, cardiovascular and cognitive development. Nature Genetics 2005;37(10):1035–1037
  • Bosley TM, Salih MA, Alorainy IA, et al. Clinical characterization of the HOXA1 syndrome BSAS variant. Neurology 2007;69(12):1245–1253
  • Holve S, Friedman B, Hoyme HE, et al. Athabascan brainstem dysgenesis syndrome. Am J Med Genet Part A 2003;120A(2):169–173
  • Bosley TM, Alorainy IA, Salih MA, et al. The clinical spectrum of homozygous HOXA1 mutations. Am J Medical Genet Part A 2008;146A(10):1235–1240
  • Tischfield MA, Chan WM, Grunert JF, et al. HOXA1 mutations are not a common cause of Duane anomaly. Am J Med Genet Part A 2006;140(8):900–902
  • Chew S, Balasubramanian R, Chan WM, et al. A novel syndrome caused by the E410K amino acid substitution in the neuronal beta-tubulin isotype 3. Brain: A J Neur 2013;136(Pt 2):522–535
  • Miller G. Neurological disorders: The mystery of the missing smile. Science 2007;316(5826):826–827
  • Pastuszak AL, Schuler L, Speck-Martins CE, et al. Use of misoprostol during pregnancy and Mobius' syndrome in infants. N Engl J Med 1998;338(26):1881–1885
  • Carta A, Mora P, Neri A, et al. Ophthalmologic and systemic features in mobius syndrome an italian case series. Ophthalmol 2011;118(8):1518–1523
  • Webb BD, Shaaban S, Gaspar H, et al. HOXB1 founder mutation in humans recapitulates the phenotype of Hoxb1-/- mice. Am J Hum Genet 2012;91(1):171–179
  • Demer JL, Clark RA, Engle EC. Magnetic resonance imaging evidence for widespread orbital dysinnervation in congenital fibrosis of extraocular muscles due to mutations in KIF21A. Invest Ophthalmol Visual Sci 2005;46(2):530–539
  • Engle EC, Goumnerov BC, McKeown CA, et al. Oculomotor nerve and muscle abnormalities in congenital fibrosis of the extraocular muscles. Annals of Neur 1997;41(3):314–325
  • Yamada K, Andrews C, Chan WM, et al. Heterozygous mutations of the kinesin KIF21A in congenital fibrosis of the extraocular muscles type 1 (CFEOM1). Nature Genet 2003;35(4):318–321
  • Yang X, Yamada K, Katz B, et al. KIF21A mutations in two Chinese families with congenital fibrosis of the extraocular muscles (CFEOM). Mol Vision. 2010;16:2062–2070
  • Tischfield MA, Baris HN, Wu C, et al. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell 2010;140(1):74–87
  • Khan AO, Shinwari J, Omar A, et al. Lack of KIF21A mutations in congenital fibrosis of the extraocular muscles type I patients from consanguineous Saudi Arabian families. Mol Vision 2011;17:218–224
  • Sener EC, Lee BA, Turgut B, et al. A clinically variant fibrosis syndrome in a Turkish family maps to the CFEOM1 locus on chromosome 12. Arch Ophthalmol 2000;118(8):1090–1097
  • Wang SM, Zwaan J, Mullaney PB, et al. Congenital fibrosis of the extraocular muscles type 2, an inherited exotropic strabismus fixus, maps to distal 11q13. Am J Hum Genet 1998;63(2):517–525
  • Nakano M, Yamada K, Fain J, et al. Homozygous mutations in ARIX(PHOX2A) result in congenital fibrosis of the extraocular muscles type 2. Nature Genet 2001;29(3):315–320
  • Yamada K, Chan WM, Andrews C, et al. Identification of KIF21A mutations as a rare cause of congenital fibrosis of the extraocular muscles type 3 (CFEOM3). Invest Ophthalmol Visual Sci 2004;45(7):2218–2223
  • Engle EC, McIntosh N, Yamada K, et al. CFEOM1, the classic familial form of congenital fibrosis of the extraocular muscles, is genetically heterogeneous but does not result from mutations in ARIX. BMC Genet 2002;3:3
  • Bosley TM, Oystreck DT, Robertson RL, et al. Neurological features of congenital fibrosis of the extraocular muscles type 2 with mutations in PHOX2A. Brain: A J Neur 2006;129(Pt 9):2363–2374
  • Demer JL, Clark RA, Tischfield MA, Engle EC. Evidence of an asymmetrical endophenotype in congenital fibrosis of extraocular muscles type 3 resulting from TUBB3 mutations. Invest Ophthalmol Visual Sci 2010;51(9):4600–4611
  • Cederquist GY, Luchniak A, Tischfield MA, et al. An inherited TUBB2B mutation alters a kinesin-binding site and causes polymicrogyria, CFEOM and axon dysinnervation. Hum Mol Genet 2012;21(26):5484–5499
  • Lu S, Zhao C, Zhao K, et al. Novel and recurrent KIF21A mutations in congenital fibrosis of the extraocular muscles type 1 and 3. Arch Ophthalmol 2008;126(3):388–394
  • Lin LK, Chien YH, Wu JY, et al. KIF21A gene c.2860C>T mutation in congenital fibrosis of extraocular muscles type 1 and 3. Mol Vision 2005;11:245–248
  • Aubourg P, Krahn M, Bernard R, et al. Assignment of a new congenital fibrosis of extraocular muscles type 3 (CFEOM3) locus, FEOM4, based on a balanced translocation t(2;13) (q37.3;q12.11) and identification of candidate genes. J Med Genet 2005;42(3):253–259
  • Tukel T, Uzumcu A, Gezer A, et al. A new syndrome, congenital extraocular muscle fibrosis with ulnar hand anomalies, maps to chromosome 21qter. J Med Genetics 2005;42(5):408–415
  • Traboulsi EI. Congenital abnormalities of cranial nerve development: overview, molecular mechanisms, and further evidence of heterogeneity and complexity of syndromes with congenital limitation of eye movements. Trans Am Ophthalmol Soc. 2004;102:373–389
  • Sharpe JA, Silversides JL, Blair RD. Familial paralysis of horizontal gaze. Associated with pendular nystagmus, progressive scoliosis, and facial contraction with myokymia. Neurology 1975;25(11):1035–1040
  • Jen JC, Chan WM, Bosley TM, et al. Mutations in a human ROBO gene disrupt hindbrain axon pathway crossing and morphogenesis. Science 2004;304(5676):1509–1513
  • Chan WM, Traboulsi EI, Arthur B, et al. Horizontal gaze palsy with progressive scoliosis can result from compound heterozygous mutations in ROBO3. J Med Genet 2006;43(3):e11
  • Volk AE, Carter O, Fricke J, et al. Horizontal gaze palsy with progressive scoliosis: three novel ROBO3 mutations and descriptions of the phenotypes of four patients. Mol Vision 2011;17:1978–1986

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.