270
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Gene Therapy in Corneal Transplantation

&
Pages 287-300 | Received 03 Jul 2013, Accepted 11 Jul 2013, Published online: 18 Oct 2013

References

  • 2011–2012 Year in Review: Focused on Restoring Sight Worldwide. Eye Bank Association of America 2012;1–13. Available at: http://issuu.com/moiremarketing/docs/ebaa-2011-12yir-final?e=1631814/2738036
  • Thompson RW Jr, Price MO, Bowers PJ, et al. Long-term graft survival after penetrating keratoplasty. Ophthalmology 2003;110:1396–1402
  • Niederkorn JY. Immune privilege and immune regulation in the eye. Adv Immunol 1990;48:191–226
  • Williams KA, Lowe M, Bartlett C, et al. Risk factors for human corneal graft failure within the Australian corneal graft registry. Transplantation 2008;86:1720–1724
  • Guilbert E, Bullet J, Sandali O, et al. Long-term rejection incidence and reversibility after penetrating and lamellar keratoplasty. Am J Ophthalmol 2013;155:560–569
  • Streilein JW, Yamada J, Dana MR, et al. Anterior chamber-associated immune deviation, ocular immune privilege, and orthotopic corneal allografts. Transplant Proc 1999;31:1472–1475
  • Alldredge OC, Krachmer JH. Clinical types of corneal transplant rejection: their manifestations, frequency, preoperative correlates, and treatment. Arch Ophthalmol 1981;99:599–604
  • Port FK, Dykstra DM, Merion RM, et al. Trends and results for organ donation and transplantation in the United States, 2004. Am J Transplant 2005;5:843–849
  • Hamrah P, Mantopoulos, D, Akhtar, J, Djalilian, AR. Immunologically high-risk penetrating keratoplasty. In: Cornea, 3rd ed. Krachmer J, Mannis, MJ, Jolland, EJ, eds. St. Louis: Mosby, 2010. pp 1495–1510
  • Ling S, Lin H, Xiang D, et al. Clinical and experimental research of corneal lymphangiogenesis after keratoplasty. Ophthalmologica 2008;222:308–316
  • Cursiefen C, Cao J, Chen L, et al. Inhibition of hemangiogenesis and lymphangiogenesis after normal-risk corneal transplantation by neutralizing VEGF promotes graft survival. Invest Ophthalmol Vis Sci 2004;45:2666–2673
  • Bachmann BO, Luetjen-Drecoll E, Bock F, et al. Transient postoperative vascular endothelial growth factor (VEGF)-neutralisation improves graft survival in corneas with partly regressed inflammatory neovascularisation. Br J Ophthalmol 2009;93:1075–1080
  • Hos D, Bock F, Dietrich T, et al. Inflammatory corneal (lymph)angiogenesis is blocked by VEGFR-tyrosine kinase inhibitor ZK 261,991, resulting in improved graft survival after corneal transplantation. Invest Ophthalmol Vis Sci 2008;49:1836–1842
  • Bachmann B, Taylor RS, Cursiefen C. Corneal neovascularization as a risk factor for graft failure and rejection after keratoplasty: an evidence-based meta-analysis. Ophthalmology 2010;117:1300–1305
  • Dana MR, Streilein JW. Loss and restoration of immune privilege in eyes with corneal neovascularization. Invest Ophthalmol Vis Sci 1996;37:2485–2494
  • Dana MR. Angiogenesis and lymphangiogenesis-implications for corneal immunity. Semin Ophthalmol 2006;21:19–22
  • Michael Edelstein. Gene Therapy Clinical Trials Worldwide; John Wiley and Sons Ltd., 2012. Available at: http://www.abedia.com/wiley/search_results.php?TrialCountry=&RefResults=&CategoryMain=Ocular+diseases&Indication=&Vector=&Genes=&GeneTypes=&Phase=&Status=&FinalApprYear=&Submit=%A0%A0Search%A0%A0
  • Ginn SL, Alexander IE, Edelstein ML, et al. Gene therapy clinical trials worldwide to 2012: an update. J Gene Med 2013;15:65–77
  • Nosov M, Wilk M, Morcos M, et al. Role of lentivirus-mediated overexpression of programmed death-ligand 1 on corneal allograft survival. Am J Transplant 2012;12:1313–1322
  • Gong N, Pleyer U, Volk HD, et al. Effects of local and systemic viral interleukin-10 gene transfer on corneal allograft survival. Gene Ther 2007;14:484–490
  • Hippert C, Ibanes S, Serratrice N, et al. Corneal transduction by intra-stromal injection of AAV vectors in vivo in the mouse and ex vivo in human explants. PLoS One 2012;7:e35318
  • Carlson EC, Liu CY, Yang X, et al. In vivo gene delivery and visualization of corneal stromal cells using an adenoviral vector and keratocyte-specific promoter. Invest Ophthalmol Vis Sci 2004;45:2194–2200
  • Chong EM, Dana MR. Graft failure IV. Immunologic mechanisms of corneal transplant rejection. Int Ophthalmol 2008;28:209–222
  • Streilein JW. Immunobiology and immunopathology of corneal transplantation. Chem Immunol 1999;73:186–206
  • Yamada J, Streilein JW. Induction of anterior chamber-associated immune deviation by corneal allografts placed in the anterior chamber. Invest Ophthalmol Vis Sci 1997;38:2833–2843
  • Hamrah P, Liu Y, Zhang Q, et al. The corneal stroma is endowed with a significant number of resident dendritic cells. Invest Ophthalmol Vis Sci 2003;44:581–589
  • Hamrah P, Zhang Q, Liu Y, et al. Novel characterization of MHC class II-negative population of resident corneal Langerhans cell-type dendritic cells. Invest Ophthalmol Vis Sci 2002;43:639–646
  • Qazi Y, Turhan, A, Hamrah, P. Trafficking of immune cells in the cornea and ocular surface. In: Advances in Ophthalmology. Rumelt S, ed. Rijeka: InTech, 2012. pp 79–104
  • Yamagami S, Kawashima H, Tsuru T, et al. Role of Fas-Fas ligand interactions in the immunorejection of allogeneic mouse corneal transplants. Transplantation 1997;64:1107–1111
  • Stuart PM, Griffith TS, Usui N, et al. CD95 ligand (FasL)-induced apoptosis is necessary for corneal allograft survival. J Clin Invest 1997;99:396–402
  • Liechtenstein T, Dufait I, Bricogne C, et al. PD-L1/PD-1 co-stimulation, a brake for T cell activation and a T cell differentiation signal. J Clin Cell Immunol 2012;S12:006
  • Shen L, Jin Y, Freeman GJ, et al. The function of donor versus recipient programmed death-ligand 1 in corneal allograft survival. J Immunol 2007;179:3672–3679
  • Yang W, Li H, Chen PW, et al. PD-L1 expression on human ocular cells and its possible role in regulating immune-mediated ocular inflammation. Invest Ophthalmol Vis Sci 2009;50:273–280
  • Patsoukis N, Sari D, Boussiotis VA. PD-1 inhibits T cell proliferation by upregulating p27 and p15 and suppressing Cdc25A. Cell Cycle 2012;11:4305–4309
  • Jiang L, He H, Yang P, et al. Splenic CD8+ T cells secrete TGF-beta1 to exert suppression in mice with anterior chamber-associated immune deviation. Graefes Arch Clin Exp Ophthalmol 2009;247:87–92
  • Stein-Streilein J, Streilein JW. Anterior chamber associated immune deviation (ACAID): regulation, biological relevance, and implications for therapy. Int Rev Immunol 2002;21:123–152
  • Wilbanks GA, Streilein JW. Studies on the induction of anterior chamber-associated immune deviation (ACAID). 1. Evidence that an antigen-specific, ACAID-inducing, cell-associated signal exists in the peripheral blood. J Immunol 1991;146:2610–2617
  • Kaplan HJ, Streilein JW. Immune response to immunization via the anterior chamber of the eye. I. F. lymphocyte-induced immune deviation. J Immunol 1977;118:809–814
  • Kaplan HJ, Streilein JW. Immune response to immunization via the anterior chamber of the eye. II. An analysis of F1 lymphocyte-induced immune deviation. J Immunol 1978;120:689–693
  • Streilein JW. Anterior chamber associated immune deviation: the privilege of immunity in the eye. Surv Ophthalmol 1990;35:67–73
  • Yao YF, Inoue Y, Miyazaki D, et al. Correlation of anterior chamber-associated immune deviation with suppression of corneal epithelial rejection in mice. Invest Ophthalmol Vis Sci 1997;38:292–300
  • Forrester JV, Xu H, Kuffova L, et al. Dendritic cell physiology and function in the eye. Immunol Rev 2010;234:282–304
  • Hamrah P, Liu Y, Zhang Q, et al. Alterations in corneal stromal dendritic cell phenotype and distribution in inflammation. Arch Ophthalmol 2003;121:1132–1140
  • Liu Y, Hamrah P, Zhang Q, et al. Draining lymph nodes of corneal transplant hosts exhibit evidence for donor major histocompatibility complex (MHC) class II-positive dendritic cells derived from MHC class II-negative grafts. J Exp Med 2002;195:259–268
  • Khan A, Fu H, Tan LA, et al. Dendritic cell modification as a route to inhibiting corneal graft rejection by the indirect pathway of allorecognition. Eur J Immunol 2012;43:734--746
  • Barcia RN, Dana MR, Kazlauskas A. Corneal graft rejection is accompanied by apoptosis of the endothelium and is prevented by gene therapy with bcl-xL. Am J Transplant 2007;7:2082–2089
  • Mellman I, Steinman RM. Dendritic cells: specialized and regulated antigen processing machines. Cell 2001;106:255–258
  • Huq S, Liu Y, Benichou G, et al. Relevance of the direct pathway of sensitization in corneal transplantation is dictated by the graft bed microenvironment. J Immunol 2004;173:4464–4469
  • Boisgerault F, Liu Y, Anosova N, et al. Differential roles of direct and indirect allorecognition pathways in the rejection of skin and corneal transplants. Transplantation 2009;87:16–23
  • Sano Y, Ksander BR, Streilein JW. Langerhans cells, orthotopic corneal allografts, and direct and indirect pathways of T-cell allorecognition. Invest Ophthalmol Vis Sci 2000;41:1422–1431
  • Williams KA, Coster DJ. The immunobiology of corneal transplantation. Transplantation 2007;84:806–813
  • Dana MR, Qian Y, Hamrah P. Twenty-five-year panorama of corneal immunology: emerging concepts in the immunopathogenesis of microbial keratitis, peripheral ulcerative keratitis, and corneal transplant rejection. Cornea 2000;19:625–643
  • Yamagami S, Amano S. Role of resident corneal leukocytes and draining cervical lymph nodes in corneal allograft rejection. Cornea 2003;22:S61–65
  • Sano Y, Streilein JW, Ksander BR. Detection of minor alloantigen-specific cytotoxic T cells after rejection of murine orthotopic corneal allografts: evidence that graft antigens are recognized exclusively via the “indirect pathway”. Transplantation 1999;68:963–970
  • Yamagami S, Miyazaki D, Ono SJ, et al. Differential chemokine gene expression in corneal transplant rejection. Invest Ophthalmol Vis Sci 1999;40:2892–2897
  • Yamagami S, Hamrah P, Zhang Q, et al. Early ocular chemokine gene expression and leukocyte infiltration after high-risk corneal transplantation. Mol Vis 2005;11:632–640
  • Yamagami S, Isobe M, Tsuru T. Characterization of cytokine profiles in corneal allograft with anti-adhesion therapy. Transplantation 2000;69:1655–1659
  • Hegde S, Niederkorn JY. The role of cytotoxic T lymphocytes in corneal allograft rejection. Invest Ophthalmol Vis Sci 2000;41:3341–3347
  • Yamada J, Ksander BR, Streilein JW. Cytotoxic T cells play no essential role in acute rejection of orthotopic corneal allografts in mice. Invest Ophthalmol Vis Sci 2001;42:386–392
  • Hegde S, Beauregard C, Mayhew E, et al. CD4(+) T-cell-mediated mechanisms of corneal allograft rejection: role of Fas-induced apoptosis. Transplantation 2005;79:23–31
  • Birnbaum F, Bohringer D, Sokolovska Y, et al. Immunosuppression with cyclosporine A and mycophenolate mofetil after penetrating high-risk keratoplasty: a retrospective study. Transplantation 2005;79:964–968
  • Costa DC, de Castro RS, Kara-Jose N. Case-control study of subconjunctival triamcinolone acetonide injection vs intravenous methylprednisolone pulse in the treatment of endothelial corneal allograft rejection. Eye (Lond) 2009;23:708–714
  • Yamaguchi T, Hamrah, P. Immunotherapy of ocular surface diseases and graft rejection. In: Copland and Afshari's Principles and Practice of Cornea. Copland R, Afshari, NA, eds. New Delhi: Jaypee Brothers, 2013. pp 580–600
  • Acar BT, Halili E, Acar S. The effect of different doses of subconjunctival bevacizumab injection on corneal neovascularization. Int Ophthalmol 2013
  • Petsoglou C, Balaggan KS, Dart JK, et al. Subconjunctival bevacizumab induces regression of corneal neovascularisation: a pilot randomised placebo-controlled double-masked trial. Br J Ophthalmol 2013;97:28–32
  • Jeong JH, Chun YS, Kim ES, et al. Compensatory growth factor and cytokine response in tears after subconjunctival bevacizumab injection. Cornea 2011;30:1071–1077
  • Dastjerdi MH, Saban DR, Okanobo A, et al. Effects of topical and subconjunctival bevacizumab in high-risk corneal transplant survival. Invest Ophthalmol Vis Sci 2010;51:2411–2417
  • Zaki AA, Farid SF. Subconjunctival bevacizumab for corneal neovascularization. Acta Ophthalmol 2010;88:868–871
  • Awadein A. Subconjunctival bevacizumab for vascularized rejected corneal grafts. J Cataract Refract Surg 2007;33:1991–1993
  • Erdurmus M, Totan Y. Subconjunctival bevacizumab for corneal neovascularization. Graefes Arch Clin Exp Ophthalmol 2007;245:1577–1579
  • Reinhard T, Mayweg S, Reis A, et al. Topical FK506 as immunoprophylaxis after allogeneic penetrating normal-risk keratoplasty: a randomized clinical pilot study. Transpl Int 2005;18:193–197
  • Dhaliwal JS, Mason BF, Kaufman SC. Long-term use of topical tacrolimus (FK506) in high-risk penetrating keratoplasty. Cornea 2008;27:488–493
  • Sloper CM, Powell RJ, Dua HS. Tacrolimus (FK506) in the management of high-risk corneal and limbal grafts. Ophthalmology 2001;108:1838–1844
  • Joseph A, Raj D, Shanmuganathan V, et al. Tacrolimus immunosuppression in high-risk corneal grafts. Br J Ophthalmol 2007;91:51–55
  • Sinha R, Jhanji V, Verma K, et al. Efficacy of topical cyclosporine A 2% in prevention of graft rejection in high-risk keratoplasty: a randomized controlled trial. Graefes Arch Clin Exp Ophthalmol 2010;248:1167–1172
  • Belin MW, Bouchard CS, Frantz S, et al. Topical cyclosporine in high-risk corneal transplants. Ophthalmology 1989;96:1144–1150
  • Cosar CB, Laibson PR, Cohen EJ, et al. Topical cyclosporine in pediatric keratoplasty. Eye Contact Lens 2003;29:103–107
  • Miller K, Huber C, Niederwieser D, et al. Successful engraftment of high-risk corneal allografts with short-term immunosuppression with cyclosporine. Transplantation 1988;45:651–653
  • Poon A, Constantinou M, Lamoureux E, et al. Topical Cyclosporin A in the treatment of acute graft rejection: a randomized controlled trial. Clin Experiment Ophthalmol 2008;36:415–421
  • Althaus C, Dagres E, Reinhard T, et al. Cyclosporin-A and its metabolites in the anterior chamber after topical and systemic application as determined with high-performance liquid chromatography-electrospray mass spectrometry. Ger J Ophthalmol 1996;5:189–194
  • Reis A, Reinhard T, Voiculescu A, et al. Mycophenolate mofetil versus cyclosporin A in high risk keratoplasty patients: a prospectively randomised clinical trial. Br J Ophthalmol 1999;83:1268–1271
  • Reinhard T, Mayweg S, Sokolovska Y, et al. Systemic mycophenolate mofetil avoids immune reactions in penetrating high-risk keratoplasty: preliminary results of an ongoing prospectively randomized multicentre study. Transpl Int 2005;18:703–708
  • Birnbaum F, Reis A, Bohringer D, et al. An open prospective pilot study on the use of rapamycin after penetrating high-risk keratoplasty. Transplantation 2006;81:767–772
  • Chatel MA, Larkin DF. Sirolimus and mycophenolate as combination prophylaxis in corneal transplant recipients at high rejection risk. Am J Ophthalmol 2010;150:179–184
  • Ippoliti G, Fronterre A. Usefulness of CD3 or CD6 anti-T monoclonal antibodies in the treatment of acute corneal graft rejection. Transplant Proc 1989;21:3133–3134
  • Ippoliti G, Fronterre A. Use of locally injected anti-T monoclonal antibodies in the treatment of acute corneal graft rejection. Transplant Proc 1987;19:2579–2580
  • Schmitz K, Hitzer S, Behrens-Baumann W. Immunsuppression durch Kombinationstherapie mit Basiliximab und Ciclosporin bei Hochrisikokeratoplastik. Eine Pilotstudie [Immune suppression by combination therapy with basiliximab and cyclosporin in high risk keratoplasty. A pilot study]. Ophthalmologe 2002;99:38–45
  • Birnbaum F, Jehle T, Schwartzkopff J, et al. Basiliximab als Monotherapie nach perforierender Risikokeratoplastik: eine prospektive randomisierte Pilotstudie [Basiliximab following penetrating risk-keratoplasty: a prospective randomized pilot study]. Klin Monbl Augenheilkd 2008;225:62–65
  • Hori J, Joyce NC, Streilein JW. Immune privilege and immunogenicity reside among different layers of the mouse cornea. Invest Ophthalmol Vis Sci 2000;41:3032–3042
  • Cursiefen C. Immune privilege and angiogenic privilege of the cornea. Chem Immunol Allergy 2007;92:50–57
  • Bertelmann E. Genetic manipulation of corneal endothelial cells: transfection and viral transduction. Methods Mol Biol 2009;467:229–239
  • Hu J, Kovtun A, Tomaszewski A, et al. A new tool for the transfection of corneal endothelial cells: calcium phosphate nanoparticles. Acta Biomater 2012;8:1156–1163
  • Qazi Y, Stagg B, Singh N, et al. Nanoparticle-mediated delivery of shRNA.VEGF-a plasmids regresses corneal neovascularization. Invest Ophthalmol Vis Sci 2012;53:2837–2844
  • Baker AH. Designing gene delivery vectors for cardiovascular gene therapy. Prog Biophys Mol Biol 2004;84:279–299
  • Surace EM, Auricchio A. Adeno-associated viral vectors for retinal gene transfer. Prog Retin Eye Res 2003;22:705–719
  • Shenk T. Adenoviridae: The viruses and their teplication. In: Fields Virology, 3rd ed. Fields B, Knipe, DM, Howley, PM, eds. Philadelphia: Lippincott-Raven, 1996. pp 2111–2148
  • Petrie NC, Yao F, Eriksson E. Gene therapy in wound healing. Surg Clin North Am 2003;83:597–616
  • Bergelson JM, Cunningham JA, Droguett G, et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997;275:1320–1323
  • Tomko RP, Xu R, Philipson L. HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci U S A 1997;94:3352–3356
  • Wickham TJ, Mathias P, Cheresh DA, et al. Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 1993;73:309–319
  • Qian Y, Leong FL, Kazlauskas A, et al. Ex vivo adenovirus-mediated gene transfer to corneal graft endothelial cells in mice. Invest Ophthalmol Vis Sci 2004;45:2187–2193
  • Araki-Sasaki K, Ohashi Y, Sasabe T, et al. An SV40-immortalized human corneal epithelial cell line and its characterization. Invest Ophthalmol Vis Sci 1995;36:614–621
  • Mashhour B, Couton D, Perricaudet M, et al. In vivo adenovirus-mediated gene transfer into ocular tissues. Gene Ther 1994;1:122–126
  • Budenz DL, Bennett J, Alonso L, et al. In vivo gene transfer into murine corneal endothelial and trabecular meshwork cells. Invest Ophthalmol Vis Sci 1995;36:2211–2215
  • Larkin DF, Oral HB, Ring CJ, et al. Adenovirus-mediated gene delivery to the corneal endothelium. Transplantation 1996;61:363–370
  • Tsubota K, Inoue H, Ando K, et al. Adenovirus-mediated gene transfer to the ocular surface epithelium. Exp Eye Res 1998;67:531–538
  • Klebe S, Sykes PJ, Coster DJ, et al. Prolongation of sheep corneal allograft survival by ex vivo transfer of the gene encoding interleukin-10. Transplantation 2001;71:1214–1220
  • Borras T, Tamm ER, Zigler JS Jr. Ocular adenovirus gene transfer varies in efficiency and inflammatory response. Invest Ophthalmol Vis Sci 1996;37:1282–1293
  • Borras T, Gabelt BT, Klintworth GK, et al. Non-invasive observation of repeated adenoviral GFP gene delivery to the anterior segment of the monkey eye in vivo. J Gene Med 2001;3:437–449
  • Oral HB, Larkin DF, Fehervari Z, et al. Ex vivo adenovirus-mediated gene transfer and immunomodulatory protein production in human cornea. Gene Ther 1997;4:639–647
  • Muzyczka N, and Berns KI. Parvoviridae: The viruses and their replication. In: Fields Virology, 4th ed. Knipe D, Howley PM, eds. Philadelphia: Lippincott Williams and Wilkins, 2001. pp 2327–2360
  • Lu Y. Recombinant adeno-associated virus as delivery vector for gene therapy: a review. Stem Cells Dev 2004;13:133–145
  • Grimm D, Kay MA, Kleinschmidt JA. Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6. Mol Ther 2003;7:839–850
  • Rutledge EA, Halbert CL, Russell DW. Infectious clones and vectors derived from adeno-associated virus (AAV) serotypes other than AAV type 2. J Virol 1998;72:309–319
  • Summerford C, Samulski RJ. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 1998;72:1438–1445
  • Walters RW, Yi SM, Keshavjee S, et al. Binding of adeno-associated virus type 5 to 2,3-linked sialic acid is required for gene transfer. J Biol Chem 2001;276:20610–20616
  • Rabinowitz JE, Rolling F, Li C, et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 2002;76:791–801
  • Mohan RR, Sharma A, Netto MV, et al. Gene therapy in the cornea. Prog Retin Eye Res 2005;24:537–559
  • Mohan RR, Schultz GS, Hong JW, et al. Gene transfer into rabbit keratocytes using AAV and lipid-mediated plasmid DNA vectors with a lamellar flap for stromal access. Exp Eye Res 2003;76:373–383
  • Hudde T, Rayner SA, De Alwis M, et al. Adeno-associated and herpes simplex viruses as vectors for gene transfer to the corneal endothelium. Cornea 2000;19:369–373
  • Tsai ML, Chen SL, Chou PI, et al. Inducible adeno-associated virus vector-delivered transgene expression in corneal endothelium. Invest Ophthalmol Vis Sci 2002;43:751–757
  • Gao GP, Alvira MR, Wang L, et al. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci U S A 2002;99:11854–11859
  • Sharma A, Ghosh A, Hansen ET, et al. Transduction efficiency of AAV 2/6, 2/8 and 2/9 vectors for delivering genes in human corneal fibroblasts. Brain Res Bull 2010;81:273–278
  • Duan D, Yue Y, Yan Z, et al. A new dual-vector approach to enhance recombinant adeno-associated virus-mediated gene expression through intermolecular cis activation. Nat Med 2000;6:595–598
  • Sun L, Li J, Xiao X. Overcoming adeno-associated virus vector size limitation through viral DNA heterodimerization. Nat Med 2000;6:599–602
  • Petrs-Silva H, Dinculescu A, Li Q, et al. Novel properties of tyrosine-mutant AAV2 vectors in the mouse retina. Mol Ther 2011;19:293–301
  • Petrs-Silva H, Dinculescu A, Li Q, et al. High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. Mol Ther 2009;17:463–471
  • Zhong L, Li B, Jayandharan G, et al. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression. Virology 2008;381:194–202
  • Zhong L, Li B, Mah CS, et al. Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc Natl Acad Sci U S A 2008;105:7827–7832
  • Mohan RR, Tovey JC, Sharma A, et al. Gene therapy in the cornea: 2005-present. Prog Retin Eye Res 2012;31:43–64
  • Clements JE, Zink MC. Molecular biology and pathogenesis of animal lentivirus infections. Clin Microbiol Rev 1996;9:100–117
  • Cullen BR, Greene WC. Functions of the auxiliary gene products of the human immunodeficiency virus type 1. Virology 1990;178:1–5
  • Maddon PJ, McDougal JS, Clapham PR, et al. HIV infection does not require endocytosis of its receptor, CD4. Cell 1988;54:865–874
  • Maddon PJ, Dalgleish AG, McDougal JS, et al. The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 1986;47:333–348
  • McDougal JS, Maddon PJ, Dalgleish AG, et al. The T4 glycoprotein is a cell-surface receptor for the AIDS virus. Cold Spring Harb Symp Quant Biol 1986;51:703–711
  • Wang X, Appukuttan B, Ott S, et al. Efficient and sustained transgene expression in human corneal cells mediated by a lentiviral vector. Gene Ther 2000;7:196–200
  • Bainbridge JW, Stephens C, Parsley K, et al. In vivo gene transfer to the mouse eye using an HIV-based lentiviral vector; efficient long-term transduction of corneal endothelium and retinal pigment epithelium. Gene Ther 2001;8:1665–1668
  • Takahashi K, Luo T, Saishin Y, et al. Sustained transduction of ocular cells with a bovine immunodeficiency viral vector. Hum Gene Ther 2002;13:1305–1316
  • Fuchsluger TA, Jurkunas U, Kazlauskas A, et al. Corneal endothelial cells are protected from apoptosis by gene therapy. Hum Gene Ther 2011;22:549–558
  • Fuchsluger TA, Jurkunas U, Kazlauskas A, et al. Anti-apoptotic gene therapy prolongs survival of corneal endothelial cells during storage. Gene Ther 2011;18:778–787
  • Parker DG, Coster DJ, Brereton HM, et al. Lentivirus-mediated gene transfer of interleukin 10 to the ovine and human cornea. Clin Experiment Ophthalmol 2010;38:405–413
  • Contreras-Ruiz L, de la Fuente M, Garcia-Vazquez C, et al. Ocular tolerance to a topical formulation of hyaluronic acid and chitosan-based nanoparticles. Cornea 2010;29:550–558
  • Rafie F, Javadzadeh Y, Javadzadeh AR, et al. In vivo evaluation of novel nanoparticles containing dexamethasone for ocular drug delivery on rabbit eye. Curr Eye Res 2010;35:1081–1089
  • Farjo R, Skaggs J, Quiambao AB, et al. Efficient non-viral ocular gene transfer with compacted DNA nanoparticles. PLoS One 2006;1:e38
  • Bourges JL, Gautier SE, Delie F, et al. Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest Ophthalmol Vis Sci 2003;44:3562–3569
  • Cai X, Conley SM, Nash Z, et al. Gene delivery to mitotic and postmitotic photoreceptors via compacted DNA nanoparticles results in improved phenotype in a mouse model of retinitis pigmentosa. Faseb J 2010;24:1178–1191
  • Ding XQ, Quiambao AB, Fitzgerald JB, et al. Ocular delivery of compacted DNA-nanoparticles does not elicit toxicity in the mouse retina. PLoS One 2009;4:e7410
  • Ziady AG, Gedeon CR, Muhammad O, et al. Minimal toxicity of stabilized compacted DNA nanoparticles in the murine lung. Mol Ther 2003;8:948–956
  • Seyfoddin A, Al-Kassas R. Development of solid lipid nanoparticles and nanostructured lipid carriers for improving ocular delivery of acyclovir. Drug Dev Ind Pharm 2013;39:508–519
  • Basaran E, Demirel M, Sirmagul B, et al. Polymeric cyclosporine-A nanoparticles for ocular application. J Biomed Nanotechnol 2011;7:714–723
  • Han Z, Conley SM, Makkia R, et al. Comparative analysis of DNA nanoparticles and AAVs for ocular gene delivery. PLoS One 2012;7:e52189
  • Konstan MW, Davis PB, Wagener JS, et al. Compacted DNA nanoparticles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate partial to complete cystic fibrosis transmembrane regulator reconstitution. Hum Gene Ther 2004;15:1255–1269
  • Qazi Y, Stagg, B, Ambati, BK. Nanoparticles in ophthalmic medicine. International Journal of Green Nanotechnology: Biomedicine 2009;1:B3–B8
  • Jain A, Gulbake A, Shilpi S, et al. Development of surface-functionalised nanoparticles for FGF2 receptor-based solid tumour targeting. J Microencapsul 2012;29:95–102
  • Lu J, Shi M, Shoichet MS. Click chemistry functionalized polymeric nanoparticles target corneal epithelial cells through RGD-cell surface receptors. Bioconjug Chem 2009;20:87–94
  • Kukowska-Latallo JF, Bielinska AU, Johnson J, et al. Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proc Natl Acad Sci U S A 1996;93:4897–4902
  • Roberts JC, Bhalgat MK, Zera RT. Preliminary biological evaluation of polyamidoamine (PAMAM) starburst dendrimers. J Biomed Mater Res 1996;30:53–65
  • Hudde T, Rayner SA, Comer RM, et al. Activated polyamidoamine dendrimers, a non-viral vector for gene transfer to the corneal endothelium. Gene Ther 1999;6:939–943
  • Tang XL, Sun JF, Wang XY, et al. Blocking neuropilin-2 enhances corneal allograft survival by selectively inhibiting lymphangiogenesis on vascularized beds. Mol Vis 2010;16:2354–2361
  • Cho YK, Uehara H, Young JR, et al. Flt23k nanoparticles offer additive benefit in graft survival and anti-angiogenic effects when combined with triamcinolone. Invest Ophthalmol Vis Sci 2012;53:2328–2336
  • Cho YK, Zhang X, Uehara H, et al. Vascular Endothelial Growth Factor Receptor 1 morpholino increases graft survival in a murine penetrating keratoplasty model. Invest Ophthalmol Vis Sci 2012;53:8458–8471
  • Jun AS, Larkin DF. Prospects for gene therapy in corneal disease. Eye (Lond) 2003;17:906–911
  • Comer RM, King WJ, Ardjomand N, et al. Effect of administration of CTLA4-Ig as protein or cDNA on corneal allograft survival. Invest Ophthalmol Vis Sci 2002;43:1095–1103
  • Gong N, Pleyer U, Yang J, et al. Influence of local and systemic CTLA4Ig gene transfer on corneal allograft survival. J Gene Med 2006;8:459–467
  • Konig Merediz SA, Zhang EP, Wittig B, et al. Ballistic transfer of minimalistic immunologically defined expression constructs for IL4 and CTLA4 into the corneal epithelium in mice after orthotopic corneal allograft transplantation. Graefes Arch Clin Exp Ophthalmol 2000;238:701–707
  • Klebe S, Coster DJ, Sykes PJ, et al. Prolongation of sheep corneal allograft survival by transfer of the gene encoding ovine IL-12-p40 but not IL-4 to donor corneal endothelium. J Immunol 2005;175:2219–2226
  • Rayner SA, Larkin DF, George AJ. TNF receptor secretion after ex vivo adenoviral gene transfer to cornea and effect on in vivo graft survival. Invest Ophthalmol Vis Sci 2001;42:1568–1573
  • Yang JW, Ham DS, Kim HW, et al. Expression of Stat3 and indoleamine 2, 3-dioxygenase in cornea keratocytes as factor of ocular immune privilege. Graefes Arch Clin Exp Ophthalmol 2012;250:25–31
  • Ryu YH, Kim JC. Expression of indoleamine 2,3-dioxygenase in human corneal cells as a local immunosuppressive factor. Invest Ophthalmol Vis Sci 2007;48:4148–4152
  • Munn DH, Shafizadeh E, Attwood JT, et al. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med 1999;189:1363–1372
  • Beutelspacher SC, Pillai R, Watson MP, et al. Function of indoleamine 2,3-dioxygenase in corneal allograft rejection and prolongation of allograft survival by over-expression. Eur J Immunol 2006;36:690–700
  • Wang X, Wang W, Xu J, et al. Pretreatment of rapamycin before allogenic corneal transplant promotes graft survival through increasing CD4(+)CD25(+)Foxp3(+) regulatory T cells. Exp Clin Transplant 2013;11:56–62
  • Shin HJ, Baker J, Leveson-Gower DB, et al. Rapamycin and IL-2 reduce lethal acute graft-versus-host disease associated with increased expansion of donor type CD4 + CD25 + Foxp3+ regulatory T cells. Blood 2011;118:2342–2350
  • Yuan XB, Yuan YB, Jiang W, et al. Preparation of rapamycin-loaded chitosan/PLA nanoparticles for immunosuppression in corneal transplantation. Int J Pharm 2008;349:241–248
  • Beauregard C, Huq SO, Barabino S, et al. Keratocyte apoptosis and failure of corneal allografts. Transplantation 2006;81:1577–1582
  • Armitage WJ, Dick AD, Bourne WM. Predicting endothelial cell loss and long-term corneal graft survival. Invest Ophthalmol Vis Sci 2003;44:3326–3331
  • Claerhout I, Beele H, Kestelyn P. Graft failure: I. Endothelial cell loss. Int Ophthalmol 2008;28:165–173
  • Salvesen GS, Dixit VM. Caspases: intracellular signaling by proteolysis. Cell 1997;91:443–446
  • Klausner EA, Peer D, Chapman RL, et al. Corneal gene therapy. J Control Release 2007;124:107–133
  • Shiraishi A, Converse RL, Liu CY, et al. Identification of the cornea-specific keratin 12 promoter by in vivo particle-mediated gene transfer. Invest Ophthalmol Vis Sci 1998;39:2554–2561
  • Tong YC, Chang SF, Liu CY, et al. Eye drop delivery of nano-polymeric micelle formulated genes with cornea-specific promoters. J Gene Med 2007;9:956–966
  • Bainbridge JW, Tan MH, Ali RR. Gene therapy progress and prospects: the eye. Gene Ther 2006;13:1191–1197
  • Williams KA, Coster DJ. Gene therapy for diseases of the cornea: a review. Clin Experiment Ophthalmol 2010;38:93–103
  • Parker DG, Brereton HM, Klebe S, et al. A steroid-inducible promoter for the cornea. Br J Ophthalmol 2009;93:1255–1259
  • Uehara H, Cho Y, Simonis J, et al. Dual suppression of hemangiogenesis and lymphangiogenesis by splice-shifting morpholinos targeting vascular endothelial growth factor receptor 2 (KDR). Faseb J 2013;27:76–85
  • Owen LA, Uehara H, Cahoon J, et al. Morpholino-mediated increase in soluble Flt-1 expression results in decreased ocular and tumor neovascularization. PLoS One 2012;7:e33576
  • Cho YK, Uehara H, Young JR, et al. Vascular endothelial growth factor receptor 1 morpholino decreases angiogenesis in a murine corneal suture model. Invest Ophthalmol Vis Sci 2012;53:685–692
  • Simonelli F, Maguire AM, Testa F, et al. Gene therapy for Leber's congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther 2010;18:643–650
  • Bennett J, Ashtari M, Wellman J, et al. AAV2 gene therapy readministration in three adults with congenital blindness. Sci Transl Med 2012;4:120ra115
  • Maguire AM, High KA, Auricchio A, et al. Age-dependent effects of RPE65 gene therapy for Leber's congenital amaurosis: a phase 1 dose-escalation trial. Lancet 2009;374:1597–1605
  • Vandenberghe LH, Bell P, Maguire AM, et al. AAV9 targets cone photoreceptors in the nonhuman primate retina. PLoS One 2013;8:e53463
  • Vandenberghe LH, Bell P, Maguire AM, et al. Dosage thresholds for AAV2 and AAV8 photoreceptor gene therapy in monkey. Sci Transl Med 2011;3:88ra54

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.