621
Views
21
CrossRef citations to date
0
Altmetric
Reviews

The Role of Plasma Kallikrein–Kinin Pathway in the Development of Diabetic Retinopathy: Pathophysiology and Therapeutic Approaches

, , &
Pages 19-24 | Accepted 02 Apr 2015, Published online: 09 Mar 2016

REFERENCES

  • International Diabetes Federation. IDF Diabetes Atlas, 6th ed.; Brussels, Belgium: International Diabetes Federation, 2013. http://www.idf.org/diabetesatlas
  • Marmor MF. Mechanisms of fluid accumulation in retinal edema. Doc Ophthalmol 1999;97:239–249
  • Haddad NMN, Sun JK, Abujaber S, et al. Cataract surgery and its complications in diabetic patients. Semin Ophthalmol 2014;29(August):329–337
  • Klein R, Klein BE. Diabetic eye disease. Lancet 1997;350(9072):197–204
  • Zeraati H, Eslani M, Mohammad K, et al. Intravitreal bevacizumab injection alone or combined with triamcinolone versus macular photocoagulation in bilateral diabetic macular edema; Application of bivariate generalized linear mixed model with asymmetric random effects in a subgroup of a clinical. J Ophthalmic Vis Res 2014;9(4):453–460
  • Aiello LM. Perspectives on diabetic retinopathy. Am J Ophthalmol 2003;136(1):122–135
  • Beetham WP, Aiello LM, Balodimos MC, Koncz L. Ruby laser photocoagulation of early diabetic neovascular retinopathy. Preliminary report of a long-term controlled study. Arch Ophthalmol 1970;83(3):261–272
  • Henricsson M, Heijl A. The effect of panretinal laser photocoagulation on visual acuity, visual fields and on subjective visual impairment in preproliferative and early proliferative diabetic retinopathy. Acta Ophthalmol (Copenh) 1994;72(5):570–575
  • Early Treatment Diabetic Retinopathy Study Research Group. Early photocoagulation for diabetic retinopathy: ETDRS report number 9. Ophthalmology 1991;98:S766–S785
  • Russell PW, Sekuler R, Fetkenhour C. Visual function after pan-retinal photocoagulation: A survey. Diabetes Care 1985;8:57–63
  • Simo R,Sundstrom JM, Antonetti DA. Ocular Anti-VEGF therapy for diabetic retinopathy: The role of VEGF in the pathogenesis of diabetic retinopathy. Diabetes Care 2014;37:893–899
  • Elman MJ, Qin H, Aiello LP, et al. Intravitreal ranibizumab for diabetic macular edema with prompt versus deferred laser treatment: Three-year randomized trial results. Ophthalmology 2012;119(11):2312–2318
  • Nguyen QD, Brown DM, Marcus DM, et al; RISE and RIDE Research Group. Ranibizumab for diabetic macular edema. Ophthalmology 2012;119(4):789–801
  • Nguyen QD, Shah SM, Khwaja AA, et al; READ-2 Study Group. Two-year outcomes of the Ranibizumab for Edema of the mAcula in Diabetes (READ-2) study. Ophthalmology 2010;117(11):2146–2151
  • Mitchell P, Bandello F, Schmidt-Erfurth U, et al; RESTORE Study Group. The RESTORE study: Ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmology 2011;118(4):615–625
  • Michaelides M, Kaines A, Hamilton RD, et al. A prospective randomized trial of intravitreal bevacizumab or laser therapy in the management of diabetic macular edema (BOLT Study). Ophthalmology 2010;117(6):1078–1086
  • Elman MJ, Aiello LP, Beck RW, et al. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology 2010;117:1064–1077
  • Brown DM, Nguyen QD, Marcus DM, et al. Long-term outcomes of ranibizumab therapy for diabetic macular edema: The 36-month results from two phase III trials: RISE and RIDE. Ophthalmology 2013;120:2013–2022
  • Feener EP. Plasma kallikrein and diabetic macular edema. Curr Diab Rep 2010;10(June):270–275
  • Gao B-B, Clermont A, Rook S, et al. Extracellular carbonic anhydrase mediates hemorrhagic retinal and cerebral vascular permeability through prekallikrein activation. Nat Med 2007;13(2):181–188
  • Gao B-B, Chen X, Timothy N, et al. Characterization of the vitreous proteome in diabetes without diabetic retinopathy and diabetes with proliferative diabetic retinopathy. J Proteome Res 2008;7(6):2516–2525
  • Clermont A, Chilcote TJ, Kita T, et al. Plasma kallikrein mediates retinal vascular dysfunction and induces retinal thickening in diabetic rats. Diabetes 2011;60(5):1590–1598
  • Abdouh M, Talbot S, Couture R, Hassessian HM. Retinal plasma extravasation in streptozotocin-diabetic rats mediated by kinin B1 and B2 receptors. Br J Pharmacol 2008;154(1):136–143
  • Phipps JA, Clermont AC, Sinha S, et al. Plasma kallikrein mediates angiotensin II type 1 receptor-stimulated retinal vascular permeability. Hypertension 2009;53:175–181
  • Sainz IM, Pixley RA, Colman RW. Fifty years of research on the plasma kallikrein-kinin system: From protein structure and function to cell biology and in-vivo pathophysiology. Thromb Haemost 2007;98:77–83
  • Cunha TM, Verri Jr WA, Fukada SY, et al. TNF-alpha and IL-1beta mediate inflammatory hypernociception in mice triggered by B1 but not B2 kinin receptor. Eur J Pharmacol 2007;573:221–229
  • Liu J, Gao, BB, Clermont, AC, et al. Hyperglycemia induced cerebral hematoma expansion is mediated by plasma kallikrein. Nat Med 2011;17:206–210
  • Schmaier AH. The kallikrein-kinin and the reninangiotensin systems have a multilayered interaction. Am J Physiol Regul Integr Comp Physiol 2003;285:R1–R13
  • Cicardi M., Levy RJ, McNeil DL, et al. Ecallantide for the treatment of acute attacks in hereditary angioedema. N Engl J Med 2010;363:523–531
  • Krogsaa B, Lund-Andersen H, Mehlsen J, et al. The blood–retinal barrier permeability in diabetic patients. Acta Ophthalmol (Copenh) 1981;59:689–694
  • Plehwe WE, Sleightholm MA, Kohner EM. Does vitreous fluorophotometry reflect severity of early diabetic retinopathy? Br J Ophthalmol 1989;73:255–260
  • Marmor MF. Mechanisms of fluid accumulation in retinal edema. Doc Ophthalmol 1999;97:239–249
  • Webb JG, Yang X, Crosson CE. Expression of the kallikrein/kinin system in human anterior segment. Exp Eye Res 2009;89:126–132
  • Pouliot M, Talbot S, Senecal J, et al. Ocular application of the kinin B1 receptor antagonist LF22-0542 inhibits retinal inflammation and oxidative stress in streptozotocin-diabetic rats. PLoS ONE 2012;7:e33864
  • Ehrenfeld P, Millan C, Matus CE, et al. Activation of kinin B1 receptors induces chemotaxis of human neutrophils. J Leukocyte Biol 2006;80:117–124
  • Abdouh M, Khanjari A, Abdelazziz N, et al. Early upregulation of kinin B1 receptors in retinal microvessels of the streptozotocin-diabetic rat. Br J Pharmacol 2003;140:33–40
  • Austinat M, Braeuninger S, Pesquero JB, et al. Blockade of bradykinin receptor B1 but not bradykinin receptor B2 provides protection from cerebral infarction and brain edema. Stroke. 2009;40(1):285–293
  • Wu D, Lin X, Bernloehr C, et al. Effects of a novel bradykinin B1 receptor antagonist and angiotensin II receptor blockade on experimental myocardial infarction in rats. PLoS ONE. 2012;7(12):e51151
  • Kita T, Clemont AC, Murugesan N, Zhou Q, Fujisawa K, Ishibashi T, Aiello LP, Feener EP. Plasma kallikrein-kinin system as a VEGF-independent mediator of diabetic macular edema. Diabetes 2015;64:3588–3599
  • Maas C, Govers-Riemslag JW, Bouma B, et al. Misfolded proteins activate factor XII in humans, leading to kallikrein formation without initiating coagulation. J Clin Invest 2008;118:3208–3218
  • White-Adams TC, Berny MA, Patel IA, et al. Laminin promotes coagulation and thrombus formation in a factor XII-dependent manner. J Thromb Haemost 2010;8:1295–1301
  • Shariat-Madar Z, Mahdi F, Schmaier AH. Recombinant prolylcarboxypeptidase activates plasma prekallikrein. Blood 2004;103:4554–4561
  • Joseph K, Tholanikunnel BG, Kaplan AP. Heat shock protein 90 catalyzes activation of the prekallikrein-kininogen complex in the absence of factor XII. Proc Natl Acad Sci USA 2002;99:896–900
  • Prematta MJ, Prematta T, Craig TJ. Treatment of hereditary angioedema with plasma-derived C1 inhibitor. Ther Clin Risk Manage 2008;4(5):975–982
  • Ma JX, Song Q, Hatcher HC, et al. Expression and cellular localization of the kallikrein-kinin system in human ocular tissues. Exp Eye Res 1996;63:19–26
  • Catanzaro O, Labal, E, Andornino, A, et al. Blockade of early and late retinal biochemical alterations associated with diabetes development by the selective bradykinin B1 receptor antagonist R-954. Peptides 2012;34:349–352
  • Pruneau D, Belichard P, Sahel JA, Combal JP. Targeting the kallikrein-kinin system as a new therapeutic approach to diabetic retinopathy. Curr Opin Invest Drugs 2010;11;507–514
  • KalVista Pharmaceuticals, Ltd. A phase I single ascending dose study of the intravitreal plasma kallikrein inhibitor KVD001 in subjects with DME. In: ClinicalTrials.gov [Internet]. Bethesda, MD: National Library of Medicine, 2000. https://clinicaltrials.gov/ct2/show/NCT02193113?term=kalvista&rank=1 (accessed June 9, 2015)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.