22
Views
17
CrossRef citations to date
0
Altmetric
Original Article

Pathogenic Thyroglobulin Peptides as Model Antigens: Insights on the Induction and Maintenance of Autoimmune Thyroiditis

&
Pages 557-572 | Published online: 10 Jul 2009

References

  • Carayanniotis G., Rao V. P. Searching for pathogenic epitopes in thyroglobulin: parameters and caveats. Immunol. Today 1997; 18: 83–88
  • Roitt I. M., Doniach D., Campell P. N., Hudson R. V. Autoantibodies in Hashimoto's disease (lymphadenoid goitre). Lancet 1956; 2: 820–821
  • Rose N. R., Witebsky E. Studies on organ specificity. V. Changes in the thyroid glands of rabbits following active immunization with rabbit thryroid extract. J. Immunol 1956; 76: 417–427
  • Di Lauro R., Obici S., Condliffe D., Ursini V. M., Musti A., Moscatelli C., Avvedimento V. E. The sequence of 967 amino acids at the carboxyl-end of rat thyroglobulin. Eur. J. Biochem 1985; 148: 7–11
  • Caturegli P., Vidalain P. O., Vali M., Aguilera L. A., GalavizRose N. R. Cloning and characterization of murine thyroglobulin cDNA. Clin. Immunol. Immunopathol 1997; 85: 221–226
  • Kim P. S., Hossain S. A.Y., Park N., Lee I. S., Yoo E., Arvan P. A single amino-acid change in the acetylcholinesterase-like domain of thyroglobulin causes congenital goiter with hypothyroidism in the cog/cog mouse: a model of human endoplasmic reticulum storage diseases. Proc. Natl. Acad. Sci. USA 1998; 95: 9909–9913
  • Malthiery Y., Lissitzky S. Primary structure of human thyroglobulin deduced from the sequence of its 8448-base complementary DNA. Eur. J. Biochem 1987; 165: 491–498
  • Mercken L. M., Simons J., Swillens S., Massaer M., Vassart G. Primary structure of bovine thyroglobulin deduced from the sequence of its 8,431-base complementary DNA. Nature 1985; 316: 647–651
  • Dunn J. T. Thyroglobulin, hormone synthesis and thyroid disease. Eur. J. Endocrinol 1995; 32: 603–604
  • Champion B. R., Rayner D. C., Byfield P. G., Page K. R., Jo C. T., Chan Roitt I. M. Critical role of iodination for T cell recognition of thyroglobulin in experimental murine thyroid autoimmunity. J. Immunol 1987; 139: 3665–3670
  • Champion B. R., Page K. R., Parish N., Rayner D. C., Dawe K., Biswas G., HughesCooke A., Geysen M., Roitt I. M. Identification of a thyroxme-containing self epitope of thyroglobulin which triggers thyroid autoreactive T cells. J. Exp. Med 1991; 174: 363–370
  • Hutchings P. R., Cooke A., Dawe K., Champion B. R., Geysen M., Valerio R., Roitt I. M. A thyroxine-containing peptide can induce murine experimental autoimmune thyroiditis. J. Exp. Med 1992; 175: 869–872
  • Dawe K. I., Hutchings P. R., Geysen M., Champion B. R., Cooke A., Roitt I. M. Unique role of thyroxine in T cell recognition of a pathogenic peptide in experimental autoimmune thyroiditis. Eur. J. Immunol 1996; 26: 768–772
  • Kong Y. M., Mc D. J., CormickWan Q., Motte R. W., Fuller B. E., Giraldo A. A., David C. S. Primary hormonogenic sites as conserved autoepitopes on thyroglobulin in murine autoimmune thyroiditis. Secondary role of iodination. J. Immunol 1995; 155: 5847–5854
  • Wan Q., Motte R. W., Mc D. J., CormickFuller B. E., Giraldo A. A., David C. S., Kong Y. M. Primary hormonogenic sites as conserved autoepitopes on thyroglobulin in murine autoimmune thyroiditis: role of MHC class II. Clin. Immunol. Immunopathol 1997; 85: 187–194
  • Rao V. P., Balasa B., Carayanniotis G. Mapping of thyroglobulin epitopes: Presentation of a 9mer pathogenic peptide by different mouse MHC class II isotypes. Immunogenetics 1994; 40: 352–359
  • Carayanniotis G., Chronopoulou E., Rao V. P. Distinct genetic pattern of mouse susceptibility to thyroiditis induced by a novel thyroglobulin peptide. Immunogenetics 1994; 39: 21–28
  • Rayner D. C., Champion B. R., Cooke A. Thyroglobulin as autoantigen and tolerogen. Monoclonal antibodies and peptide therapy in autoimmune diseases, J. F. Bach. Marcel Dekker, Inc., New York 1993; 359–376
  • Wan Q., Mc D. J., CormickDavid C. S., Kong Y. M. Thyroglobulin peptides from specific primary hormonogenic sites can generate cytotoxic T cells and serve as target autoantigens in experimental autoimmune thyroiditis. Clin. Immunol. Immunopathol 1998; 86: 110–114
  • Kong Y. M., Lomo L. C., Motte R. W., Giraldo A. A., Baisch J., Strauss G., Hammerling G. J., David C. S. HLA-DRB1 polymorphism determines susceptibility to autoimmune thyroiditis in transgenic mice: Definitive association with HLA-DRB10301 (DR3) gene. J. Exp. Med 1996; 184: 1167–1172
  • Wan Q., Shah R., Giraldo A. A., David C. S., Kong Y. M. HLA-DQ8 transgenic class II-negative mice develop autoimmune thyroiditis after induction with human thyroglobulin. Human Immunol. 2000, Submitted.
  • McLntosh R. S., Watson P. F., Pickerill R., Davies R., Weetman A. P. No restriction of intrathyroidal T cell receptor Va families in the thyroid of Graves' disease. Clin. Exp. Immunol 1993; 91: 147–152
  • Caso E., Mc Peláez A. M., GregorBanga J. P. A polyclonal T cell repertoire of V-alpha and V-beta T cell receptor gene families in intrathyroidal T lymphocytes of Graves' disease patients. Scand. J. Immunol 1995; 41: 141–147
  • Martin A., Barbesino G., Davies T. F. T-cell receptors and autoimmune thyroid disease-Signposts for T-cell-antigen driven diseases. Intern. Rev. Immunol 1999; 18: 111–140
  • Matsuoka N., Bernard L. A., Concepcion L. A., Graves P. N., Ben A., NunGraves P., Davies T. F. T cell receptor V beta gene expression in the autoimmune thyroiditis of NOD mice. J. Immunol 1993; 151: 1691–1701
  • Sugihara S., Fujiwara H., Shearer G. M. Autoimmune thyroiditis induced in mice depleted of particular T cell subsets. Characterization of thyroiditis-inducing T cell lines and clones derived from thyroid lesions. J. Immunol 1993; 150: 683–694
  • Matsuoka N., Unger P., Ben A., NunGraves P., Davies T. F. Thyroglobulin-induced murine thyroiditis assessed by intrathyroidal T cell receptor sequencing. J. Immunol 1994; 154: 2562–2568
  • Mc R. W., MurrayHoffman R. W., Tang H., Braley H. Mullen. T cell receptor V/3 usage in murine experimental autoimmune thyroiditis. Cell Immunol 1996; 172: 1–9
  • Nakashima M., Kong Y. M., Davies T. F. The role of T cells expressing TcR Vβ in autoimmune thyroiditis induced by transfer of mouse thyroglobulin-activated lymphocytes: identification of two common CDR3 motifs. Clin. Immunol. Immunopathol 1996; 80: 204–210
  • Rao V. P., Russell R. S., Carayanniotis G. Recruitment of multiple Vβ genes in the TCR repertoire against a single pathogenic thyroglobulin epitope. Immunology 1997; 91: 623–627
  • Lomo L. C., Zhang F., Mc D. J., CormickGiraldo A. A., David C. S., Kong Y. M. Flexibility of the thyroiditogenic T cell repertoire for murine autoimmune thyroiditis in CD8-deficient (β2m-/-) and T cell receptor Vβc congenic mice. Autoimmunity 1998; 27: 127–133
  • Creemers P., Rose N. R., Kong Y. M. Experimental autoimmune thyroiditis. In vitro cytotoxic effects of T lymphocytes on thyroid monolayers. J. Exp. Med 1983; 157: 559–571
  • Lomo L. C., Motte R. W., Giraldo A. A., Nabozny G. H., David C. S., Rimm I. J., Kong Y. M. Vβ8.2 transgene expression interferes with development of experimental autoimmune thyroiditis in CBA k/q but not k/k mice. Cell Immunol 1996; 168: 297–301
  • Rao V. P., Carayanniotis G. Contrasting immunopathogenic properties of highly homologous peptides from rat and human thyroglobulin. Immunology 1997; 90: 244–249
  • Gammon G., Shastri N., Cogswell J., Wilbur S., Sadegh S., NasseriKrzych U., Miller A., Sercarz E. The choice of T cell epitopes utilized on a protein antigen depends on multiple factors distant from as well as at the determinant site. Immunol. Rev 1987; 98: 53–73
  • Rao V. P., Kajon A. E., Spindler K. R., Carayanniotis G. Involvement of epitope mimicry in potentiation but not initiation of autoimmune disease. J. Immunol 1999; 162: 5888–5893
  • Ball A. O., Williams M. E., Spindler K. R. Identification of mouse adenovirus type 1 early region 1: DNA sequence and a conserved transactivating function. J. Virol 1988; 62: 3947–3957
  • Mc B. L., RaeNikcevich K. M., Karpus W. J., Hurst S. D., Miller S. D. Differential recognition of peptide analogs by naive versus activated PLP 139–151-specific CD4+ T cells. J. Neuroimmunol 1995; 60: 17–28
  • Carrizosa A. M., Nicholson L. B., Farzan M., Southwood S., Sette A., Sobel R. A., Kuchroo V. K. Expansion by self antigen is necessary for the induction of experimental autoimmune encephalomyelitis by T cells primed with a cross-reactive environmental antigen. J. Immunol 1998; 161: 3307–3314
  • Damle N. K., Klussman K., Linsley P. S., Aruffo A. Differential costimulatory effects of adhesion molecules B7, ICAM-1, LFA-3, and VCAM-1 on resting and antigen-primed CD4+ T lymphocytes. J. Immunol 1992; 148: 1985–1992
  • Croft M., Bradley L. M., Swain S. L. Naive versus memory CD4 T cell response to antigen: Memory cells are less dependent on accessory cell costimulation and can respond to many antigen-presenting cell types including resting B cells. J. Immunol 1994; 152: 2675–2685
  • Luqman M., Bottomly K. Activation requirements for CD4+ T cells differing in CD45R expression. J. Immunol 1992; 149: 2300–2306
  • Volpé R., Row V. V., Ezrin V. Circulating viral and thyroid antibodies in subacute thyroiditis. J. Clin. Endocrinol. Metabol 1967; 27: 1275–1284
  • Tomer Y., Davies T. F. Infection, thyroid disease and autoimmunity. Endocr. Rev 1993; 14: 107–120
  • Tonooka N., Leslie G. A., Greer M. A., Olson J. C. Lymphoid thyroiditis following immunization with group A streptococcal vaccine. Am. J. Pathol 1978; 92: 681–687
  • Valtonen V. V., Ruutu P., Vans K. Serological evidence for the role of bacterial infections in the pathogenesis of thyroid disease. Acta Med. Scand 1986; 219: 105–111
  • Lanzavecchia A. How can cryptic epitopes trigger autoimmunity. J. Exp. Med 1995; 181: 1945–1948
  • Simitsek P. D., Campbell D. G., Lanzavecchia A., Fairweather N., Watts C. Modulation of antigen processing by bound antibodies can boost or suppress class II major histocompatibility complex presentation of different T cell determinants. J. Exp. Med 1995; 181: 1957–1963
  • Amigorena S., Bonnerot C. Role of B-cell and Fc receptors in the selection of T-cell epitopes. Curr. Opin. Immunol 1998; 10: 88–92
  • Stockinger B. Capacity of antigen uptake by B cells, fibroblasts or macrophages determines efficiency of presentation of a soluble self antigen (C5) to T lymphocytes. Eur. J. Immunol 1992; 22: 1271–1278
  • Watts C. Capture and processing of exogenous antigens for presentation on MHC molecules. Amu. Rev. Immunol 1997; 15: 821–850
  • Lehmann P. V., Sercarz E. E., Forsthuber T., Dayan C. M., Gammon G. Determinant spreading and the dynamics of the autoimmune T-cell repertoire. Immunol Today 1993; 14: 203–208
  • Dai Y., Carayanniotis K. A., Eliades P., Lymberi P., Shepherd P., Kong Y. M., Carayanniotis G. Enhancing or suppressive effects of antibodies on processing of a pathogenic T-cell epitope in thyroglobulin. J. Immunol 1999; 162: 6987–6992
  • Ozaki S., Berzofsky J. A. Antibody conjugates mimic specific B cell presentation of antigen: relationship between T and B cell specificity. J. Immunol 1987; 138: 4133–4142
  • Berzofsky J. A. T-B reciprocity. An la-restricted epitope-specific circuit regulating T cell-B cell interaction and antibody specificity. Surv. Immunol Res 1983; 2: 223–229
  • Tomer Y. Anti-thyroglobulin amoantibodies in autoimmune thyroid diseases: cross-reactive or pathogenic. Clin. Immunol. Immunopathol 1997; 82: 3–11
  • Weetman A. P., Black C. M., Cohen S. B., Tomlinson R., Banga J. P., Reimer C. B. Affinity purification of IgG subclasses and the distribution of thyroid auto-antibody reactivity in Hashimoto's thyroiditis. Scand. J. Immunol 1989; 30: 73–82
  • Weetman A. P., Cohen S. The IgG subclass distribution of thyroid autoantibodies. Immunol. Let 1986; 13: 335–341
  • Devey M. E., Bleasdale K. M., BarrMc S. M., LachlanBradbury J., Clark F., Young E. T. Serial studies on the affinity and heterogeneity of human autoanti-bodies to thyroglobulin. Clin. Exp. Immunol 1989; 77: 191–195
  • Kuppers R. C., Hu Q., Rose N. R. Mouse thyroglobulin: conservation of sequence homology in C-terminal immunogenic regions of thyroglobulin. Autoimmunity 1996; 23: 175–180

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.