35
Views
8
CrossRef citations to date
0
Altmetric
Original Article

T-cell Tolerance and Autoimmune Diabetes

, &
Pages 301-331 | Published online: 10 Jul 2009

References

  • Samelson L. E., Patel M. D., Weissman A. M., Harford J. B., Klausner R. D. Antigen activation of murine T-cells induces tyrosine phosphorylation of a polypeptide associated with the antigen receptor. Cell 1986; 46: 1083
  • Reth M. Antigen receptor tail clue. Nature 1989; 338: 383
  • Qian D., Griswold-Prenner I., Rosner M. R., Fitch F. W. Multiple components of the T-cell antigen receptor complexes become phosphorylated upon activation. J. Biol. Chem. 1993; 268: 4488
  • Marth J. D., Peet R., Krebs E. G., Perimutter R. M. A lymphocytespecific protein tyrosine kinase gene is rearranged and overexpressed in the murine T-cell lymphoma LSTRA. Cell 1985; 43: 393
  • Weil E., Veillette A. Signal transduction by the lymphocyte-specific tyrosine protein kinase p561ck. Curr. Topics Microbiol. Immunol. 1996; 205: 63
  • Margolis B., Hu P., Katzav S., Li W., Oliver J. M., Ullrich A., Weiss A., Schlessinger J. Tyrosine phosphorylation of vav proto-oncogene product containing SH2 domain and transcription factor motifs. Nature 1992; 356: 71
  • Donovan J. A., Wange R. L., Langton W. A., Samelson L. E. The protein product of the c-Cbl oncogene is the 120 kDa tyrosine phosphorylated protein in Jurkat cells activated via the T-cell receptor. J. Biol. Chem. 1994; 269: 22921
  • Ravichandran K. S., Lee K. K., Songyang Z., Cantley L. C., Burn P., Burakoff S. J. Interaction of She with zeta chain of the T-cell receptor upon T-cell activation. Science 1993; 262: 902
  • Bruyns E., Marie-Cardine A., Kirchgessner H., Sagolla K., Schevchenko A., Mann M., Autschbach F., Bensussan A., Meuer S., Schraven B. T-cell receptor (TCR) interacting molecule (TRIM), a novel disulfide-linked dimer associated with the TCR-CD3- complex, recruits intracellular signaling proteins to the plasma membrane. J. Exp. Med. 1998; 188: 561
  • Jackman J. K., Motto D. G., Sun Q., Tanemoto M., Turck C. W., Peltz G. A., Koretzky G. A., Findell P. R. Molecular cloning of SLP-76, a 76-kDa tyrosine phosphoprotein associated with Grb-2 in T-cells. J. Biol. Chem. 1995; 270: 7079
  • Wu J., Motto D. G., Koretzky G. A., Wiess A. Vav and Slp-76 interact and functionally cooperate in IL-2 gene activation. Immunity 1996; 4: 593
  • Raab M., Da Silava A. J., Findell P. R., Rudd C. E. Regulation of Vav-SLP-76 binding by ZAP-70 and its relevance to TCR. Immunity 1997; 6: 155
  • Egerton M., Burgess W. H., Chen D., Druker B. J., Bretscher A., Samelson L. E. Identification of ezrin as an 81-kDa tyrosine-phosphorylatcd protein in T-cells. J. Immunol. 1992; 149: 1847
  • Egerton M., Ashe O. R., Chen D., Druker B. J., Buergess W. H., Samelson L. E. VCP, the mammalian homolog of cdc48, is tyrosine phosphorylated in response to T-cell antigen receptor activation. EMBO J. 1992; 11: 3533
  • Zhang W., Sloan-Lancester J., Kitchen J., Trible R. P., Samelson L. E. LAT: the ZAP-70 tyrosine kinase substrate that links T-cell receptor to cellular activation. Cell 1998; 92: 83
  • Gulbins E., Coggeshall K. M., Gottfried B., Katzav S., Burn P., Altman A. Tyrosine kinase stimulated guanidine nucleotide exchange activity of Vav in T-cell activation. Science 1993; 260: 822
  • Bustelo X. R., Suen K. L., Leftheris K., Meyers C. A., Barbacid M. Vav cooperates with Ras to transform rodent fibroblasts but is not a Ras GDP/GTP exchange factor. Oncogene 1994; 9: 2405
  • Tarakhovski A., Turner M., Schaal S., Mee P. J., Duddy L., Rajewski K., Tybulewicz V. L.J. Defective antigen receptor mediated proliferation of B- and T-cells in the absence of Vav. Nature 1995; 374: 467
  • Marshall C. J. MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr. Opin. Genet. Dev. 1994; 4: 82
  • Boussiotis V. A., Freeman G. J., Berezovskaya A., Barber D. L., Nadler L. M. Maintenance of human T-cell anergy: blocking of IL-2 gene transcription by activated Rapl. Science, 278: 124
  • Marais R., Wynne J., Treisman R. The SRF accessory protein Elk-1 contains a growth-factor-regulated transcriptional activation domain. Cell 1993; 73: 381
  • Cooper J. A. Straight and narrow or tortuous and intersecting?. Curr. Biol. 1994; 4: 1118
  • Nunes J., Collette Y., Truneh A., Olive D., Cantrell D. A. The role of p21ras in CD28 signal transduction: Triggering of CD28 with antibodies but not the ligand B7–1 activates p21ras. J. Exp. Med. 1994; 180: 1067
  • Weiss A., Imboden J. B. Cell surface molecules and early events involved in human T lymphocyte activation. Adv. Immunol. 1987; 41: 1
  • Lewis R. S., Cahalan M. D. Potasium and calcium channels in lymphocytes. Annu. Rev. Immunol. 1995; 13: 623
  • Cantrell D. T-cell antigen receptor signal transduction pathways. Annu. Rev. Immunol. 1996; 14: 259
  • Shaw K. T., Ho A. M., Raghavan A., Kim J., Jain J., Park J., Sharma S., Rao A., Hogan P. G. Immunosuppressive drugs prevent a rapid dephosphorylation of transcription factor NFATI in stimulated immune cells. Proc. Natl. Acad. Sci. USA 1995; 92: 11205
  • Rao A., Luo C., Hogan P. G. Transcription factors of the NFAT family: regulation an function. Annu. Rev. Immunol. 1997; 15: 707
  • Pingel J. T., Thomas M. L. Evidence that the leukocyte-common antigen is required for antigen-induced T lymphocyte proliferation. Cell 1989; 58: 1055
  • Weaver C. T., Pingel J. T., Nelson G. U., Thomas M. L. CD8+ T-cell clones deficient in the expression of the CD45 protein tyrosine phosphatase have impaired responses to T-cell receptor stimuli. Mol. Cell. Biol. 1991; 11: 4415
  • Ledbetter J. A., Schieven G. L., Uckun F. M., Imboden J. B. CD45 cross-linking regulates phospholipase C activation and tyrosine phosphorylation of specific substrates in CD3/Ti-stimulated T-cells. J. Immunol. 1991; 146: 1577
  • Shivnan E., Biffen M., Shiroo M., Pratt E., Glennie M., Alexander D. Does co-aggregation of the CD45 and CD3 antigens inhibit T-cell antigen receptor complex-mediated activation of phospholipase C and protein kinase C?. Eur. J. Immunol. 1992; 22: 1055
  • Osterguard H. L., Trowbridge I. S. Coclustering CD45 with CD4 or CDS alters the phosphorylation and kinase activity of p561ck. J. Exp. Med. 1990; 172: 347
  • Hurley T. R., Hyman R., Sefton B. M. Differential effect of expression of the CD45 tyrosine protein phosphatase on the tyrosine phosphorylation of the lck, fyn, and c-src tyrosine protein kinases. Mol. Cell. Biol. 1993; 13: 1651
  • Bergman M., Mustelin T., Ockten C., Partanen J., Mint N. A., Amrein K. E., Autero M., Burn P., Alitalo K. The human p50csk tyrosine kinase phosphorylates p561ck at Tyr-505 and down regulates its catalytic activity. EMBO J. 1992; 11: 2919
  • Sondhi D., Xu W., Songyang Z., Eek M. J., Cole P. A. Peptide and protein phosphorylation by protein tyrosine kinase Csk: insights into specificity and mechanism. Biochemistry 1998; 37: 165
  • Rao N., Lupher M. L., Ota S., Jr, Reedquist K. A., Drucker B. J., Band H. The linker phosphorylation site Tyr 292 mediates the negative regulatory effect of Cbl on ZAP-70 in T-cells. J. Immunol. 2000; 164: 4616
  • Doyle C., Strominger J. L. Interaction between CD4 and class II MHC molecules mediates cell adhesion. Nature 1987; 330: 256
  • Rivas A., Takada S., Koide J., Sonderstrup-McDevitt G., Engelman E. G. CD4 molecules are associated with antigen receptor complex on activated but not resting T-cells. J. Immunol. 1988; 140: 2912
  • Mittler R. S., Goldman S. J., Spitalny G. L., Burakoff S. J. T-cell receptor-CD4 physical association in a murine T-cell hybridoma: induction by antigen receptor ligation. Proc. Natl. Acad. Sci. USA 1989; 86: 8531
  • Rojo J. M., Saizawa K., Janeway C. A., Jr. Physical association of CD4 and the T-cell receptor can be induced by anti-T-cell receptor antibodies. Proc. Natl. Acad. Sci. USA 1989; 86: 3311
  • Sleckman B. P., Peterson A., Jones W. K., Koran J. A., Greenstein J. L., Seed B., Burakoff S. J. Expression and function of CD4 in a murine T-cell hybridoma. Nature 1987; 328: 351
  • Boussiotis V. A., Barber D. L., Lee B. J., Gribben J. G., Freeman G. J., Nadler L. M. Differential association of protein tyrosine kinases with the T-cell receptor is linked to the induction of anergy and its prevention by B7 family-mediated costimulation. J. Exp. Med. 1996; 184: 365
  • Carrel S., Moretta A., Pantaleo G., Tambussi G., Isler P., Perussia J.-B., Cerottini C. Stimulation and proliferation of CD4+ peripheral blood T lymphocytes induced by anti-CD4 monoclonal antibody. Ear. J. Immunol. 1988; 18: 333
  • Oyaizy N., McCloskey T. W., Than S., Hu R., Kalyanaraman V. S., Pahwa S. Cross-linking of CD4 molecules upregulates Fas antigen expression in lymphocytes by inducing interferon-gamma and tumor necrosis factor-alpha secretion. Blood 1994; 84: 2622
  • Baldari C. T., Milia E., Di S. M., Baldoni F., Valitutti S., Telford J. L. Distinct signaling properties identify functionally different CD4 epitopes. Eur. J. Immunol. 1995; 25: 1843
  • Milia E., Di Somma M. M., Majolini M. B., Ulivieri C., Somma F., Piccolella E., Telford J. L., Baldari C. T. Gene activating and proapoptotic potential are independent properties of different CD4 epitopes. Mol. Immunol. 1997; 34: 287
  • Thuillier L., Hivroz C., Fagard R., Andreoli C., Mangeat P. Ligation of CD4 surface antigen induces rapid tyrosine phosphorylation of the cytoskeletal protein erzin. Cell. Immunol. 1994; 156: 322
  • Finco T. S., Kadlecek T., Zhang W., Samelson L. E., Weiss A. LAT is required for TCR mediated activation of PLCgammal and the Ras pathway. Immunity. 1998; 5: 617
  • Baldari C. J., Pelicci G., Di Somma M. M., Milia E., Giuli S., Pelicci P. G., Telford J. L. Inhibition of CD4/p561ck signaling by a dominant negative mutant of the Shc adaptor protein. Oncogene 1995; 10: 1141
  • Anderson M.-P., Blue L., Morimoto C., Schlossman S. F. Cross-linking of T3(CD3) with T4(CD4) enhances the proliferation of resting T lymphocytes. J. Immunol. 1987; 139: 678
  • Walker C., Bettens F., Pickler W. J. Activation of T-cells by cross-linking an anti-CD3 antibody with a second anti-T-cell antibody: mechanism and subset-specific activation. Eur. J. Immunol. 1987; 17: 873
  • Emmrich F., Kanz L., Eichmann K. Cross-linking of the T-cell receptor complex with the subset-specific differentiation antigen stimulates interleukin-2 receptor expression in human CD4 and CD8 T-cells. Eur. J. Immunol. 1987; 17: 529
  • Shen X., Hu B., Mc Phie P., Wu X., Fox A., Germain R. N., Konig R. Peptides corresponding to CD4-interacting regions of murine MHC class II molecules modulate immune responses of CD44-T lymphocytes in vitro and in vivo. J. Immunol. 1996; 157: 87
  • Leitenberg D., Boutin Y., Constant S., Bottomly K. CD4 regulation of TCR signaling and T-cell differentiation following stimulation with peptides of different affinities for the TCR. J. Immunol. 1998; 161: 1194
  • Fowell D. J., Magram J., Turck C. W., Killeen N., Locksley R. M. Impaired Th2 subset development in the absence of CD4. Immunity 1997; 6: 559
  • Brown D. R., Moskowitz N. H., Killen N., Reiner S. L. A role for CD4 in peripheral T-cell differentiation. J. Exp. Med. 1997; 186: 101
  • Fowell D. J., Magram J., Turck C. W., Killeen N., Locksley R. M. Impaired Th2 subset development in the absence of CD4. Immunity 1997; 6: 559
  • Dianzani U., Shaw A., Fernandez-Cabezudo M., Janeway C. A. Jr., Extensive CD4 cross-linking inhibits T-cell activation by anti-receptor antibody but not by antigen. Int. Immunol. 1992; 9: 995
  • Casares S., Zong C. S., Radu D. L., Miller A., Bona C. T.-A., Brumeanu D. Antigen-specific signaling by a soluble, dimeric peptide/MHC Class II/Fc chimera leading to Th2 differentiation. J. Exp. Med. 1999; 190: 543
  • Schwartz R. Models of T-cell anergy: Is there a common molecular mechanism?. J. Exp. Med. 1996; 184: 1
  • Jenkins M. K., Schwartz R. H. Antigen presentation by chemically modified splenocytes induces antigen-specific T-cell unresponsiveness in vitroin vivo. J. Exp. Med. 1987; 165: 302
  • Quill H., Schwartz R. H. Stimulation of normal inducer T-cell clones with antigen presented by purified Ia molecules in planar lipid membranes: specific induction of a long-lived state of proliferation nonresponsiveness. J. Immunol. 1987; 138: 3704
  • Muller D. L., Jenkins M. K., Schwartz R. H. An accessory-cell derived costimulatory signal acts independently of protein kinase C activation to allow T-cell proliferation and prevent the induction of unresponsiveness. J. Immunol. 1989; 142: 2617
  • Jenkins M. K., Chen C., Jung G., Muller D. L., Schwartz R. H. Inhibition of antigen-specific proliferation of type 1 murine T-ceil clones after stimulation with immobilized anti-CD3 monoclonal antibody. J. Immunol. 1990; 144: 16
  • Boussiotis V. A., Freeman G. J., Gray G., Gribben J., Nadler L. M. B7 but not intercellular adhesion molecule-1 costimulation prevents the induction of human alloantigen-specific tolerance. J. Exp. Med. 1993; 178: 1753
  • Boussiotis V. A., Barber D. L., Nakarai T., Freeman G. J., Gribben G. J., Bernstein G. M., D'Andrea A. O., Ritz J., Nadler L. M. Prevention of T-cell anergy by signaling through the gamma c chain of the IL-2 receptor. Science 1994; 266: 1039
  • Kang S.-M., Beverly A.-B., Tran C., Brorson K., Schwartz R. H., Lenardo M. J. Transactivation by AP-1 is a molecular target of T-cell clonal anergy. Science 1992; 257: 1134
  • Fields P. E., Gajewski T. F., Fitch F. W. Blocked ras activation in anergic CD4+ T-cells. Science 1996; 271: 1276
  • Li W., Whaley C. D., Mondino A., Muller D. L. Blocked signal transduction to the ERK. and JNK protein kinases in anergic CD4+ T-cells. Science 1996; 271: 1272
  • Beverly S.-B., Kang M., Lenardo M. J., Schwartz R. H. Reversal of in vitro T-cell clonal anergy by IL-2 stimulation. Int. Immunology 1992; 4: 661
  • Muller D. L., Chiodetti L., Bacon P. A., Schwartz R. H. Clonal anergy blocks the response to IL-4, as well as to the production of IL-2 in dual-producing helper T-cell clones. J. Immunol. 1991; 147: 4118
  • Sloan-Lancaster J., Evavold B. D., Allen P. M. Th2 cell clonal anergy as a consequence of partial activation. J. Exp. Med. 1994; 180: 1195
  • Becker J. C., Brabletz T., Kirchner T., Conrad T. E.-C., Brocker B., Reisfeld R. A. Negative transcriptional regulation in anergic T-cells. Proc. Natl. Acad. Sci. USA 1995; 92: 2375
  • Sloan-Lancaster J., Evavold B. D., Allen P. M. Induction of T-cell anergy by altered T-cell receptor ligand on live antigen-presenting cells. Nature 1993; 363: 156
  • Sloan-Lancaster J., Shaw A. S., Rothbard J. B., Allen P. M. Partial T-cell signaling: altered phospho-zeta and lack of ZAP-70 recruitment in APL-induced T-cell anergy. Off 1994; 79: 913
  • Madrenas J., Schwartz R. H., Germain R. N. IL-2 production, not the pattern of early TCR-dependent tyrosine phosphorylation, controls anergy induction by both agonists and partial agonists. Proc. Natl. Acad. Sci. USA 1996; 93: 9736
  • Madrenas J., Wange R. L., Wang J. L., Isakov M., Samelson L. E., Germain R. N. Zeta phosphorylation without ZAP-70 activation induced by TCR antagonists or partial agonists. Science 1995; 267: 515
  • O'Hehir R. E., Yssel H., Verma S., de Vries J., Spits H., Lamb J. R. Clonal analysis of differential lymphokine production in peptide and superantigen induced T-cell anergy. Int. Immunol. 1991; 3: 819
  • Lasalle J. M., Hatter D. A. T-cell anergy. FASEB J. 1994; 8: 601
  • Wotton D., Higgins J. A., O'Hehir R. E., Lamb J. R., Lake R. A. Differential induction of the NFAT complex during restimulation and the induction of T-cell anergy. Human Immunol. 1995; 42: 95
  • Zanders E. D., Lamb J. R., Feldman M., Green M., Beverly P. C.L. Tolerance of T-cells is associated with membrane changes. Nature 1983; 303: 645
  • Lake R. A., O'Hehir R. E., Verhoef A., Lamb J. R. CD28 mRNA rapidly decays when activated T-cells are functionally anergized with specific peptide. Int. Immunol. 1993; 5: 461
  • Shevach E. M. Regulatory T-cells in autoimmunity. Annu. Rev. Immunol. 2000; 18: 423
  • Papiernik M., Leite M., De Moraes, Pontous C., Vasseur F., Penit C. Regulatory CD4 T-cells: expression of IL-2R alpha chain, resistance to clonal deletion and IL-2 dependency. Int. Immunol. 1998; 10: 371
  • Sedden B., Masson D. Peripheral autoantigen induces regulatory T-cells that prevent autoimmunity. J. Exp. Med. 1999; 189: 877
  • Lepault F., Gagnerault M. C. Characterization of peripheral regulatory CD4+ T-cells that prevent diabetes onset in nonobese diabetic mice. J. Immunol. 2000; 164: 240
  • Nishizuka Y., Sakakura T. Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science 1969; 166: 753
  • Gershon R. K., Kondo K. Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 1970; 18: 723
  • Levings M. K., Roncarolo M. G. T-regulatory-1 cells: A novel subset of CD4 T cells with immunoregulatory properties. J. Allergy Clin. Immunol. 2000; 106: 109
  • Groux H., O'Gara A., Bigler M., Rouleau M., Antonenko S., de Vries J. E., Roncarolo M. G. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature, 389: 737
  • Thornton A. M., Shevach E. M. Suppressor effector function of CD4+CD25+ immunoregulatory T-cells is antigen non-specific. J. Immunol. 2000; 164: 183
  • Saoudi A., Seddon B., Fowell D., Mason D. The thymus contains a high frequency of cells that prevent autoimmune diabetes on transfer into prediabelic recipients. J. Exp. Med. 1996; 184: 2393
  • Taguchi O., Kontani K., Ikeda H., Kezuka T., Takeuchi M., Takahashi T. Tissue-specific suppressor T-cells involved in self-tolerance are activated extra-thymieally by self-antigens. Immunology 1994; 82: 365
  • Annacker O., Burlen-Defranoux O., Pimenta-Araulo R., Cumano A., Bandeira A. Regulatory CD4 T-cells control the size of the peripheral activated/memory CD4 T-cell compartment. J. Immunol. 2000; 164: 3573
  • Seddon B., Mason D. Regulatory T-cells in the control of autoimmunity: the essential role of transforming growth factor beta and interleukin 4 in the prevention of autoimmune thyroiditis in rats by peripheral CD4+CD45RC-cells and CD4+CD8-thymocytes. J. Exp. Med. 1999; 189: 279
  • Cederbom L., Hall H., Ivars F. CD4+CD25+ regulatory T-cells down-regulate co-stimulatory molecules on antigen-presenting cells. Eur. J. Immunol. 2000; 30: 1538
  • Honey K., Cobbold S. P., Waldmann H. Dominant tolerance and linked suppression induced by therapeutic antibodies do not depend on FAS-FASL interactions. Transplantation 2000; 69: 1683
  • Takahashi T., Kuniyasu Y., Toda M., Sakaguchi N., Itoh M., Iwata M., Shimizu J., Sakaguchi S. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T-cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 1998; 10: 1969
  • Ogawa M., Maruyama T., Hasegawa T., Kanaya T., Kobayashi F., Uda H. Biomed. Res., 6: 103
  • Bowman M. A., Leiter E. H., Atkinson M. A. Prevention of diabetes in NOD mouse: implications for therapeutic interventions in human disease. Immunol. Today 1994; 15: 115
  • Miyakazi A., Hanafusa T., Yamada K., Miyagawa J., Nonaka H., Tarui S. Predominance of T lymphocytes in pancreatic islets and spleen of pre-diabetic non-obese diabetic (NOD) mice: a longitudinal study. Clin. Exp. Immunol. 1985; 60: 622
  • Serreze D. V., Leiter E. H., Worthen S. M., Shultz L. D. NOD marrow stem cells adoptively transfer diabetes to resistant (NOD x NON) F1 mice. Diabetes 1988; 37: 252
  • Wicker L. S., Miller B. J., Muller Y. Transfer of autoimmune diabetes mellitus with splenocytes from non obese diabetic (NOD) mice. Diabetes 1986; 35: 855
  • Peterson J. D., Pike B., McDuffie M., Haskins K. Islet-specific T-cell clones transfer diabetes to nonobese diabetic (NOD) Fl mice. J. Immunol. 1994; 153: 2800
  • Elias D., Cohen I. R. Peptide therapy for diabetes in NOD mice. Lancet, 343: 704
  • Herold K. C., Montag A. G., Buckingham F. Induction of tolerance to autoimmune diabetes with islet antigens. J. Exp. Med. 1994; 176: 1107
  • Shizuku J. A., Taylor-Edwards C., Banks B. A., Gregory A. K., Fathmann C. G. Immunotherapy of the non obese diabetic mouse: treatment with an antibody to T-helper lymphocytes. Science 1988; 240: 659
  • Koike T., Itoh Y., Ishi T., Ito I., Maruyama N., Yomioka H., Yoshida S. Preventive effect of monoclonal anti-L3T4 antibody on development of diabetes in NOD mice. Diabetes 1987; 36: 539
  • Atkinson M. A., Kaufman D. L., Campbell L., Tobin A. J., Maclaren N. K. Response of peripheral-blood mononuclear cells to glutamate decarboxylase in insulin-dependent diabetes. Lancet 1992; 339: 458
  • Miller G. G., Pollack M. S., Nell L. J., Thomas J. W. Insulin-specific human T cells. Epitope specificity, major histocompatibility complex restriction, and alloreactivity to a diabetes-associated haplotype. J. Immunol. 1987; 139: 3622
  • Passini N., Larigan J. D., Genovese S., Apella E., Sinigaglia F., Rogge L. The 37/40-kilodalton autoantigen in insulin-dependent diabetes mellitus is the putative tyrosine phosphatase IA-2. Proc. Natl. Acad. Sci. USA 1995; 92: 9412
  • Elias D., Reshef T., Birk O. S., Walker M. D., Cohen I. R. Vaccination against autoimmune diabetes with a T-cell epitope of the human 65-kDa heat shock protein. Proc. Natl. Acad. Sci. USA 1991; 88: 3088
  • Roep B. O., Duinkerken G., Schreuder G. M.T., De Vries R. R.P., Martin S. HLA-associated inverse correlation between T-cell and antibody responsiveness to islet autoantigen in recent-onset insulin-dependent diabetes mellitus. Eur. J. Immunol 1996; 26: 1285
  • Miyazaki T., Uno M., Uehira M., Kikutani H., Kishimoto T., Kimoto M., Nishimoto H., Miyazaki J., Yamamura K. Direct evidence for the contribution of the unique I-ANOD to the development of insulitis in non-obese diabetic mice. Nature 1990; 345: 722
  • Slattery R. M., Kjer-Nielsen L., Allison J., Charlton B., Mandel T. J., Miller F. A.P. Prevention of diabetes in non-obese diabetic I-Ak transgenic mice. Nature 1990; 345: 724
  • Lund T., O'Reilly L., Hutchings P., Kanagawa O., Simpson E., Gravely R., Chandler P., Dyson J., Picard J. K., Edwards A., Kioussis D., Cooke A. Prevention of insulin-dependent diabetes mellitus in non-obese diabetic mice by transgenes encoding modified I-A beta-chain or normal I-E alpha-chain. Nature 1990; 345: 727
  • Tisch R., McDevitt H. O. Insulin-dependent diabetes mellitus. Cell 1996; 85: 291
  • Fox C. J., Danska J. S. IL-4 expression at the onset of islet inflammation predicts nondestructive insulitis in nonobese diabetic mice. J. Immunol. 1997; 158: 2414
  • Tisch R., Yang X. D., Singer S. M., Liblau R. S., Fugger L., McDevitt H. O. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature 1993; 366: 72
  • Katz J. D., Benoist C., Mathis D. T helper cell subsets in insulin-dependent diabetes. Science 1995; 268: 1185
  • Trembleau S., Penna G., Bosi E., Mortara A., Gately M. K., Adorini L. Interleukin 12 administration induces T helper type 1 cells and accelerates autoimmune diabetes in NOD mice. J. Exp. Med. 1995; 181: 817
  • Wang Y., Hao L., Gill R. G., Lafferty K. J. Autoimmune diabetes in NOD mouse is L3T4 T-lymphocyte dependent. Diabetes 1987; 36: 535
  • Debray-Sachs M., Carnaud C, Boitard C., Cohen H., Gresser I., Bedossa P., Bach J.-I. Prevention of diabetes in NOD mice treated with antibody to murine IFN gamma. J. Autoimmun. 1991; 4: 237
  • Peterson L. D.M., van der Keur R., de Vries R. P., Roep O. B. Autoreactive and immunoregulatory T-cell subsets in insulin-dependent diabetes mellitus. Diabetologia 1999; 42: 443–449
  • Takahashi T., Kuniyasu Y., Toda M., Sakaguchi N., Itoh M., Iwata M., Shimizy J., Sakaguchi S. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T-cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 1998; 10: 1969
  • Thorntonand A. M., Shevach E. M. CD4+CD25+ immunoregulatory T-cells suppress polyclonal T-cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 1998; 188: 287
  • Seddon B., Saoudi A., Nicholson M., Mason D. CD4+CD8-thymocytes that express L-selectin protect rats from diabetes upon adoptive transfer. Eur. J. Immunol. 1996; 26: 2702
  • Han H. S., Jun H. S., Utsugi T., Yoon J. W. A new type of CD4+ T-cells completely prevents spontaneous autoimmune diabetes and recurrent diabetes in syngeneic islet-transplanted NOD mice. J. Autoimmun. 1996; 9: 331
  • Pankewycz O. G., Guan J. X., Benedict J. F. A protective NOD islet-infiltrating CD8+ T-cell clone, I.S. 2.15, has in vitro immunosuppressive properties. Eur. J. Immunol. 1992; 22: 2017
  • Han H. S., Jun H. S., Utsugi T., Yoon J. W. Molecular role of TGF-beta, secreted from a new type of CD4+ suppressor T-cell, NY4.2, in the prevention of autoimmune IDDM in NOD mice. J. Autoimmun. 1997; 10: 299
  • Sumida T., Furukawa M., Sakamoto A., Namekawa T., Maeda T., Zijlstra M., Iwamoto I., Koike T., Yoshida S., Tomioka H., Taniguchi M. Prevention of insulitis and diabetes in beta 2-microglobulin-deficient non-obese diabetic mice. Int. Immunol 1994; 6: 1445
  • Katz J., Benoist C., Mathis D. Major histocompatibility complex class I molecules are required for the development of insulitis in non-obese diabetic mice. Eur. J. Immunol. 1993; 23: 3358
  • Skyler J. S. The winds of change. Diabetes 1993; 45: 637
  • De Maria R., Testi R. FAS-FASL interactions: a common pathogenic mechanism in organ-specific autoimmunity. Immunol. Today 1998; 19: 121
  • Chervonsky A. V., Wang Y., Wong F. S., Visitin I., Flavell R. A., Janeway C. A., Jr, Matis L. A. The role of Fas in autoimmune diabetes. Cell 1997; 89: 17
  • Roep B. O. T-cell responses to autoantigens in IDDM. The search for the Holy Grail. Diabetes 1996; 45: 1147
  • Song Y. H., Li Y., McLaren N. The nature of autoantigens targeted in autoimmune endocrine diseases. Immunol. Today 1996; 17: 232
  • Bendelac A., Boitard C., Bedossa P., Bazin J.-H., Bach F., Carnaud C. Adoptive T-cell transfer of autoimmune nonobese diabetic mouse diabetes does not require recruitment of host B lymphocytes. J. Immunol. 1988; 8: 2625
  • Bellgrau D., Stenger D., Richards C., Bao F. The diabetic BB rat. Neither Th1 nor Th2?. Horm. Metab. Res. 1996; 28: 299
  • Salojin K., Zhang G., Cameron M., Gill B., Arreza G., Ochi A., Delovitch T. L. Impaired plasma membrane targeting of Grb2-murine son of sevenless (mSOS) complex and differential activation of the Fyn-T-cell receptor (TCR)-zeta chain-Cbl pathway mediate T-cell hyporesponsiveness in autoimmune nonobese diabetic mice. J. Exp. Med. 1997; 186: 887
  • Rapoport M. J., Lazarus A. H., Jaramillo A., Speck E., Delovitch T. L. Thymic T-cell anergy in autoimmune nonobese diabetic mice is mediated by deficient T-cell receptor regulation of the pathway of p21ras activation. J. Exp. Med. 1993; 177: 1221
  • De Maria R., Todaro M., Stassi G., Di Bassi F., Giordano M., Galluzzo A., Giordano C. Defective T-cell receptor/CD3 complex signaling in human type I diabetes. Eur. J. Immunol. 1994; 24: 999
  • Schwartz R. H. A cell culture model for T lymphocyte clonal anergy. Science 1990; 248: 1349
  • Casares S., Bona T.-C. A., Brumeanu D. Engineering and characterization of a murine MHC-immunoglobulin chimera expressing an immunodominant OD4 T viral epitope. Protein Engineering 1997; 10: 1295
  • Radu T.-D., Brumeanu D., McEvoy R. C., Bona C. A., Casares S. Escape from natural self-tolerance leads to neonatal insulin-dependent diabetes mellitus. Autoimmunity 1999; 30: 199
  • Kaufmann D. L., Clare-Saizier M., Tian J., Forsthuber T., Ting G. S.P., Robinson P., Atkinson M. A., Sercarz E. E., Tobin A. J., Lehmann P. V. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature 1993; 366: 69
  • Tisch X.-R., Yang D., Singer S. M., Liblau R. S., Fugger L., McDevitt H. O. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature 1993; 366: 72
  • Tian R., Clare-Salzler M., Herschenfeld A., Middelton B., Newman D., Mueller R., Arita A., Evans C., Atkinson M. A., Mullen Y., Sarvetnick N., Tobin A. J., Lehmann P. V., Kaufman D. L. Modulating autoimmune responses to GAD inhibits disease progression and prolongs graft survival in diabetes-prone mice. Nat. Med. 1996; 2: 1384
  • Tian J., Atkinson M. A., Clare-Salzler M., Herschenfeld A., Forsthuber T., Lehmann P. V., Kaufman D. L. Nasal administration of glutamate decarboxylase (GAD65) peptides induces Th2 responses and prevents murine insulin-dependent diabetes mellitus. J. Exp. Med. 1996; 183: 1561
  • Tian R., Clare-Salzler M., Herschenfeld A., Middelton B., Newman D., Mueller R., Arita A., Evans C., Atkinson M. A., Mullen Y., Sarvetnick N., Tobin A. J., Lehmann P. V., Kaufman D. L. Modulating autoimmune responses to GAD inhibits disease progression and prolongs graft survival in diabetes-prone mice. Nat. Med. 1996; 2: 1384
  • Tian J., Atkinson M. A., Clare-Salzler M., Herschenfeld A., Forsthuber T., Lehmann P. V., Kaufman D. L. Nasal administration of glutamate decarboxylase (GAD65) peptides induces Th2 responses and prevents murine insulin-dependent diabetes mellitus. J. Exp. Med. 1996; 183: 1561
  • Maron R., Melican N. S., Weiner H. L. Regulatory Th2-type T-cell lines against insulin and GAD peptides derived from orally- and nasally-treated NOD mice suppress diabetes. J. Autoimmun. 1999; 12: 251
  • Heath V. L., Hutchings P., Fowell D. J., Cooke A., Mason D. W. Peptides derived from murine insulin are diabetogenic in both rats and mice, but the disease-inducing epitopes are different: evidence against a common environmental cross-reactivity in the pathogenicity of type 1 diabetes. Diabetes 1999; 48: 2157
  • Hutchings P., Cooke A. Protection from insulin dependent diabetes mellitus afforded by insulin antigens in incomplete Freunds's adjuvant depends on route of administration. J. Autoimmun. 1998; 11: 127
  • Daniel D. Wegmann Intranasal administration of insulin peptide B9–23 protects NOD mice from diabetes. Ann. NY Acad. Sci. 1996; 778: 371
  • Daniel D., Wegmann D. R. Protection of nonobese diabetic mice from diabetes by intranasal or subcutaneous administration of insulin peptide B9–23. Proc. Natl. Acad. Sci. USA 1996; 93: 956
  • Polanski M., Melican N. S., Zhang J., Weiner H. L. Oral administration of the immunodominant B-chain of insulin reduces diabetes in a co-transfer model of diabetes in the NOD mouse and is associated with a switch from Th1 to Th2 cytokines. J. Autoimmun. 1997; 10: 339
  • Tisch T., Wang B., Serreze D. V. Induction of glutamic acid decarboxylase 65-specific Th2 cells and suppression of autoimmune diabetes at late stages of disease is epitope dependent. J. Immunol. 1999; 163: 1178
  • Wicker L. S., Chen S. L., Nepom G. T., Elliott J. F., Freed D. C., Bansal A., Zheng S., Herman A., Lernmark A., Zaller D. M., Peterson L. B., Rothbard J. B., Cummings R., Whiteley P. J. Naturally processed T-cell epitopes from human glutamic acid decarboxylase identified using mice transgenic for the type 1 diabetes-associated human MHC class II allele DRB1*0401. J. Clin. Invest. 1996; 98: 2597
  • Endl J., Otto H., Jung G., Dreisbusch B., Donie F., Stahl P., Elbracht R., Schmitz G., Meini E., Hummel A.-M., Ziegier G., Wank R., Schendel D. J. Identification of naturally processed T-cells epitopes from glutamic acid decarboxylase presented in the context of HLA-DR alleles by T lymphocytes of recent onset IDDM patients. J. Clin. Invest. 1997; 99: 2405
  • Patel S. D., Cope A. P., Congia M., Chen T. T., Kim E., Fugger L., Wherrett D., Sonderstrup-McDevitt G. Identification of immunodominant T-cell epitopes of human glutamic acid decarboxylase 65 by using HLA-DR(α1*0101, β1*0401) transgenic mice. Proc. Natl. Acad. Sci. USA 1997; 94: 8082
  • Congia M., Patel S., Cope A. P., De Virgilis S., Sonderstrup G. T-cell epitopes of insulin defined in HLA-DR4 transgenic mice are derived from preproinsulin and proinsulin. Proc. Natl. Acad. Sci. USA 1998; 95: 3833
  • Boyton R., Lohmann T., Londei M., Kalbacher H., Hlader T., Prater A., Douek D., Leslie D., Flavell R., Altmann D. GAD T lymphocyte responses associated with susceptibility or resistance to type 1 diabetes: analysis in disease-discordant human twins, nonobese diabetic mice and HLA-DQ transgenic mice. Int. Immunol. 1998; 10: 1765
  • Liu J., Purdy L. E., Rabinovitch S., Jevnikar A. M., Elliot J. F. Major DQ8-restricted T-cell epitopes for human GAD65 mapped using human CD4, DQA1*0301, DQB1*0302 transgenic IAnull NOD mice. Diabetes 1999; 48: 469
  • Abraham R., Wilson B., De Souza N., Strominger J., Munn S., David D. NOD background genes influenza T-cells responses to GAD65 in HLA-DQ8 transgenic mice. Hum. Immunol. 1999; 60: 583
  • Herman A. E., Tisch R. M., Patel S. D., Parry S. L., Olson J., Noble J. A., Cope A. P., Cox B., Congia M., McDevitt H. O. Determination of glutamic acid decarboxylase 65 peptides presented by the type 1 diabetes-associated HLA-DQ8 class II molecules identifies an immunogenic peptide motif. J. Immunol. 1999; 163: 6275
  • Raju R., Munn S., David C. T-cell recognition of human preproinsulin peptides depends on the polymorphism at the HLA-DQ locus: a study using HLA-DQ8 and DQ6 transgenic mice. Hum. Immunol. 1997; 58: 21
  • Casares S., Inaba T.-K., Brumeanu D., Steinman R., Bona C. A. Antigen presentation by dendritic cells following immunization with DNA encoding a MHC class-II restricted epitope. J. Exp. Med. 1997; 186: 1481
  • Brumeanu T.-D., Swiggard W. J., Steinman R. M., Zaghouani H., Bona C. A. Efficient loading of identical peptide onto class II molecules by antigenized immunoglobulin and influenza virus. J. Exp. Med. 1993; 178: 1795
  • Brumeanu T.-D., Zaghouani H., Daian C., Eliah E., Bona C. A. Derivatization with monomethoxypolyethylene glycol of Igs expressing viral epitopes obviates adjuvant requirements. J. Immunol. 1995; 154: 3088

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.