62
Views
37
CrossRef citations to date
0
Altmetric
Original Article

Role of TNF Family Ligands in Antitumor Activity of Natural Killer Cells

Pages 415-437 | Received 07 Apr 2001, Published online: 10 Jul 2009

References

  • Trinchieri G. Biology of natural killer cells. Adv. Immunol. 1989; 47: 187–376
  • Berke G. The binding and lysis of target cells by cytotoxic lymphocytes: Molecular and cellular aspects. Annu. Rev. Immunol. 1994; 12: 735–773
  • Podack E.R., Hengartner H., Lichtenheld M.G. A central role of perform in cytolysis?. Annu. Rev. Immunol. 1991; 9: 129–152
  • Golstein P., Ojcius D.M., Young J.D.-E. Cell death mechanisms and the immune system. Immunol. Rev. 1991; 121: 29–65
  • Chambers W.H., Brissette-Storkus C.S. Hanging in the balance: natural killer cell recognition of target cells. Chem. Biol. 1995; 2: 429–435
  • Lanier L.L. NK cell receptors. Annu. Rev. Immunol. 1998; 16: 359–393
  • Liu C.-C., Walsh C.M., Young J.D.-E. Perforin: structure and function. Immunol. Today 1995; 16: 192–201
  • Smith M.J., Trapani J.A. Granzymes: exogenous proteinases that induce target cell apoptosis. Immunol. Today 1995; 16: 202–206
  • Talento A., Nguyen M., Law S. Transfection of mouse cytotoxic T lymphocytes with an antisense granzyme A vector reduces lytic activity. J. Immunol. 1992; 149: 4009–4015
  • Berestford P.J., Xia Z., Greenberg A.H., Lieberman J. Granzyme A loading induces rapid cytolysis and a novel form of DNA damage independently of caspase activation. Immunity 1999; 10: 585–594
  • Medema J.P., Toes R.E.M., Scaffidi C., Zheng T.S., Flavell R.A., Melief C.J.M., Peter M.E., Offringa R., Kramer P.H. Cleavage of FLICE (caspase-8) by granzyme B during cytotoxic T lymphocyte-induced apoptosis. Eur. J. Immunol. 1997; 27: 3492–3498
  • Hameed R., Schafer W., Sundersan V.D., Vaccarello L. Human T-lymphocyte serine proteases (granzymes) 1 1996; 2:and 3 mediated DNA fragmentation in susceptible target cells. Human Immunol., 49: 13–21
  • Anel A., Gamen S., Alava M.A., Schmitt-Verhulst A.-M., Pineiro A., Naval J. Inhibition of CPP32-like proteases prevents granzyme B-and Fas-, but not granzyme A-based cytotoxicity exerted by CTL clones. J. Immunol. 1997; 158: 1999–2006
  • Vujanovic N.L., Nagashima S., Herberman R.B., Whiteside T.L. Nonsecretory apoptotic killing by human NK cells. J. Immunol. 1996; 157: 1117–1126
  • Vujanovic N.L., Basse P., Herberman R.B., Whiteside T.L. Antitumor functions of natural killer cells and control of metastases. METHODS: A Companion to Methods in Enzymology 1996; 9: 394–408
  • Whiteside T.L., Herberman R.B. The role of natural killer cells in immune surveillance of cancer. Current Opinion in Immunol. 1995; 7: 704–710
  • Berke G. Interactions of cytolytic T lymphocytes and target cells. Progr. Allergy 1980; 27: 69–133
  • Berke G. The CTL's kiss of death. Cell 1995; 81: 9–12
  • Berke G. Unlocking the secrets of CTL and NIC cells. Immunol. Today 1995; 16: 343–346
  • Henkart P.A. Lymphocyte-mediated cytotoxicity: Two pathways and multiple effector molecules. Immunity 1994; 1: 343–346
  • Podack E.R. Functional significance of two cytolytic pathways of cytotoxic T lymphocytes. J. Leukuc. Biol. 1995; 57: 548–552
  • Vujanovic N.L., Yasumura S., Hirabayashi H., Lin W.-C., Watkuns S., Herberman R.B., Whiteside T.L. Antitumor activitioes of subsets of human IL-2-activated natural killer cells in solid tissues. J. Immunol. 1995; 154: 281–289
  • Nagashima S., Vujanovic N.L., Giorda R., Herberman R.B., Whiteside T.L. Killing mechanisms utilized by activated natural killer cells against solid tumor cell targets. FASEB J. 1995; 9: 1285–A221
  • Gorelik E., Herberman R.B. Role of natural killer (NK) cells in the control of tumor growth and metastatic spread. Cancer Immunology: Innovative Approaches to Therapy. Martinus Nijhoff Publishers, Boston 1986, R. B. Herberman 152176
  • Basse P., Herberman R.B., Nanmark U., Johanson R.B., Hokland M., Wasserman K., Goldfarb R.H. Accumulation of adoptively transferred adherent, lymphokine-activated killer cells in murine metastases. J. Exp. Med. 1991; 174: 479–488
  • Yasumura S., Lin W.-C., Hirabayashi H., Vujanovic N.L., Herberman R.B., Whiteside T.L. Immunotherapy of liver metastases of human gastric carcinoma with interleukin 2-activated natural killer cells. Cancer Res. 1994; 54: 3808–3816
  • Okada K., Nanmark U., Vujanovic N.L., Watkins S., Basse P., Herberman R.B., Whiteside T.L. Elimination of established liver metastases by human interleukin 2-activated natural killer cells after locoregional or systemic adoptive transfer. Cancer Res. 1996; 56: 1599–1608
  • Beutler B., van Huffel C. Unraveling function in the TNF ligand and receptor families. Science 1994; 264: 667–668
  • Smith C.A., Farrah T., Goodwin R.G. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 1994; 76: 959–969
  • Gruss H.J. Molecular, structural, and biological characteristics of the tumor necrosis factor ligand superfamily. Int. J. Clin. Lab. Res. 1996; 26: 143–159
  • Lotz M., Setareh M., von Kempis J, Schwarz H. The nerve growth factor/tumor necrosis factor receptor family. J. Leuk. Biol. 1996; 60: 1–7
  • Singh A., Ni J., Aggarwal B.B. Death domain receptors and their role in cell demise. J. Interfer. Cytok. Res. 1998; 18: 439–450
  • Schulze-Osthoff K., Ferrari D., Los M., Wesselborg S., Peter M.E. Apoptosis signaling by death receptors. Eur. J. Biochem. 1998; 254: 439–459
  • Wallach D., Varfolomeev E.E., Malinin N.L., Goltsev Y.V., Kovalenko A.V., Boldin M.P. Tumor necrosis factor and Fas signaling mechanisms. Annu. Rev. Immunol. 1999; 17: 331–367
  • Nakano H., Oshima H., Chung W., Williams-Abbott L., Ware C.F., Yagita H., Okumura K. TRAF5, an activator of NF-KB and putative signal transducer for the lymphotoxin-β receptor. J. Biol. Chem. 1996; 271: 14661–14664
  • Force W.R., Cheung T.C., Ware C.F. Dominant negative mutants of TRAF3 reveal an important role for the coiled coil domains in cell death signaling by the lymphotoxin-β receptor. J. Biol. Chem. 1997; 272: 30835–30840
  • Varfolomeev E.E., Boldin M.P., Goncharv T.M., Wallach D. A potential mechanism of “cross-talk” between the p55 tumor necrosis factor receptor and Fas/APO1: Proteins binding to the death domains of the two receptors also bind to each other. J. Exp. Med. 1996; 183: 1271–1275
  • Kinkhabwala M., Sehajpal P., Skolnik E., Smith D., Sharma V.K., Vlassara H., Cerami A., Suthanthiran M. A novel addition to the T cell repertory. Cell surface expression of tumor necrosis factor/cachectin by activated normal human T cells. J. Exp. Med. 1990; 171: 941–946
  • Monastra G., Cabrelle A., Zambon A., Rosato A., Macino B., Collavo D., Zanovello P. Membrane form of TNF-α induces both cell lysis and apoptosis in susceptible target cells. Cell. Immunol. 1996; 171: 102–110
  • Abe Y., Horiuchi A., Osuka Y., Kimura S., Granger G.A., Gatanaga T. Studies of membrane-associated and soluble (secreted) lymphotoxin in human lymphokine-activated T-killer cells in vitro. Lymphokine Cytokine Res. 1992; 11: 115–121
  • Ware C.F., Crowe P.D., Grayson M.H., Androlewicz M.J., Browning J.L. Expression of surface lymphotoxin and TNF on activated T, B and NK cells. J. Immunol. 1992; 149: 3881–3888
  • Suda T., Okazaki T., Naito Y., Yokota T., Arai N., Ozaki S., Nakao K., Nagata S. Expression of the Fas ligand in cells of T cell lineage. J. Immunol. 1995; 154: 3806–3813
  • Lowin B., Hahne M., Mattmann C., Tshopp J. Cytotoxic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature 1994; 370: 650–652
  • Kagi D., Vignaux F., Ledermann B., Burki K., Depraetere V., Nagata S., Hengartner H., Golstein P. Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science 1994; 265: 528–530
  • Bossi G., Griffiths G.M. Degranulation plays an essential part in regulating cell surface expression of Fas ligand in T cells and natural killer cells. Nature Med. 1999; 5: 90–96
  • Martinez-Lorenzo M.J., Anel A., Gamen S., Monleon I., Lasierra P., Larrad L., Pineiro A., Alava M.A., Naval J. Activated human T cells release bioactive Fas ligand and APO2 ligand in microvesicles. J. Immunol. 1999; 163: 1274–1281
  • Nagata S. Apoptosis by death factor. Cell 1997; 88: 355–365
  • Kagi D., Ledermann B., Burki K., Zinkernagel R.M., Hengartner H. Molecular mechanisms of lymphocyte-mediated cytotoxicity and their role in immunological protection and pathogenesis in vivo. Annu. Rev. Immunol. 1996; 14: 207–232
  • Glass A., Walsh C.M., Lynch D.H., Clark W.R. Regulation of the Fas lytic pathway in cloned CTL. J. Immunol. 1996; 156: 3638–3644
  • Stalder T., Hahn S., Erb P. Fas antigen is the major target molecule for CD4+ T cell-mediated cytotoxicity. J. Immunol. 1994; 152: 1127–1133
  • Hahne M., Renno T., Schroeter M., Irmler M., French L., Bornand T., MacDonald H.R., Tschopp J. Activated B cells express functional Fas ligand. Eur. J. Immunol. 1996; 26: 721–724
  • Oyaizu N., Adachi Y., Hashimoto F., McCloskey T.W., Hosaka N., Kayagaki N., Yagita H., Pahwa S. Monocytes express Fas ligand upon CD4 cross-linking and induce CD4+ T cells apoptosis. J. Immunol. 1997; 158: 2456–2463
  • Kiener P.A., Davis P.M., Rankin B.M., Klebanoff S.J., Ledbetter J.A., Starling G.C., Liles W.C. Human monocytic cells contain high levels of intracellular Fas ligand. J. Immunol. 1997; 159: 1594–1598
  • Badley A.D., Dockrell D., Simpson M., Schut R., Lynch D.H., Libson P., Paya C.V. Macrophage-dependent apoptosis of CD4+ T lymphocytes from HIV-infected individuals is mediated by Fast and tumor necrosis factor. J. Exp. Med. 1997; 185: 55–64
  • Suss G., Shortman K. A subclass of dendritic cells kills CD4 T cells via Fas/Fas-ligand-induced apoptosis. J. Exp. Med. 1996; 183: 1789–1796
  • Lu L., Quian S., Hershberger P.A., Rudert W.A., Lynch D.H., Thomson A.W. Fas ligand (CD95L) and B7 expression on dendritic cells provide counter-regulatory signals for T cell survival and proliferation. J. Immunol. 1997; 158: 5676–5684
  • Arase H., Arase N., Saito T. Fas-mediated cytotoxicity by freshly isolated natural killer cells. J. Exp. Med. 1995; 181: 1235–1238
  • Montel A.M., Bochan M.R., Hobbs J.A., Lynch D.H., Brahmi Z. Fas involvement in cytotoxicity mediated by human NK cells. Cell. Immun. 1995; 166: 236–246
  • Oshimi Y., Oda S., Honda Y., Nagata S., Miyazaki S. Involvement of Fas ligand and Fas-mediated pathway in the cytotoxicity of human natural killer cells. J. Immunol. 1996; 157: 2909–2915
  • Mori S., Jewell A., Murakami-Mori K., Cavalcanti M., Bonavida B. The participation of the Fas-mediated cytotoxic pathway by natural killer cells is tumor-cell-dependent. Cancer Immunol. Immunother. 1997; 44: 282–290
  • Sayers T.J., Brooks A.D., Lee J.-K., Fenton R.G., Komschlies K.L., Wigginton J.M., Winkler-Pickett R., Wiltrout R.H. Molecular mechanisms of immune-mediated lysis of murine renal cancer: Differential contribution of perforin-dependent versus Fas-mediated pathways in lysis by NK and T cells. J. Immunol. 1998; 161: 3957–3965
  • Kashii Y., Giorda R., Herberman R.B., Whiteside T.L., Vujanovic N.L. Constitutive expression and role of the TNF family ligands in apoptotic killing of tumor cells by human NK cells. J. Immunol. 1999; 163: 5358–5366
  • Piazza C., Montani M.S.G., Moretti S., Cundari E., Piccolella E. CD4+ T cells kill C/D8+ T cells via Fas/Fas ligand-mediated apoptosis. J. Immunol. 1997; 158: 1503–1506
  • Lopez-Cepero M., Garcia-Sanz J.A., Herbert L., Riley R., Handel M.E., Podack E.R., Lopez D.M. Soluble and membrane-bound TNF-α are involved in the cytotoxic activity of B cells from tumor-bearing mice against tumor targets. J. Immunol. 1994; 152: 3333–3341
  • Takamuku K., Baba K., Arinaga S., Li J., Mori M., Akiyoshi T. Apoptosis in antibody-dependent monocyte-mediated cytotoxicity with monoclonal antibody 17–1A against human colorectal carcinoma cells: enhancement with interferon 7. Cancer Immunol. Immunother. 1996; 43: 220–225
  • Vitolo D., Vujanovic N.L., Rabinowich H., Schlesinger M., Herberman R.B., Whiteside T.L. Rapid IL-2-induced adherence of human natural killer cells. Expression of mRNA for cytokines and IL-2 receptors in adherent NK cells. J. Immunol. 1993; 151: 1926–1937
  • Lee R.K., Spielman J., Zhao D.Y., Olsen K.J., Podack E.R. Perform, Fas ligand, and tumor necrosis factor are the major cytotoxic molecules used by lymphokine-activated killer cells. J. Immunol. 1996; 157: 1919–1925
  • Thomas W.D., Hersey P. TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in Fas ligund-resistant melanoma cells and mediates CD4 T cell killing of target cells. J. Immunol. 1998; 161: 2195–2200
  • Mariani S.M., Krammer P.H. Surface expression of TRAIL/Apo-2 ligand in activated mouse T and B cells. Eur. J. Immunol. 1998; 28: 1492–1498
  • Kayagaki N., Yamaguchi N., Nakayama M., Kawasaki A., Akiba H., Okumura K., Yagita H. Involvement of TNF-relateda apoptosis-inducing ligand in CD4+ T cell-mediated cytotoxicity. J. Immunol. 1999; 162: 2639–2647
  • Phillips T.A., Ni J., Pan G., Ruben S.M., Wei Y.-F., Pace J.L., Hunt J.S. TRAIL (Apo-2L) and TRAIL receptors in human placentas: Implications for immune privilege. J. Immunol. 1999; 162: 6053–6059
  • Fanger N.A., Maliszewski C.R., Schooley K., Griffith T.S. Human dendritic cells mediate cellular apoptosis via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J. Exp. Med. 1999; 190: 1155–1164
  • Zamai L., Ahmad M., Bennet I.M., Azzoni L., Alnemri E.S., Perusia B. Natural killer (NK) cell-mediated cytotoxicity: Differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J. Exp. Med. 1998; 188: 2375–2380
  • Tschopp J., Irmler M. Thome Inhibition of Fas death signals by FLIPs. Curr. Opin. Immunol. 1998; 10: 552–558
  • French L.E., Tschopp J. Inhibition of death receptor signaling by FLICE-inhibitory protein as a mechanism for immune escape of tumors. J. Exp. Med. 1999; 190: 891–893
  • Van den Broek M.F, Kagi D., Ossendorp F., Toes R., Vamvakas S., Lutz W.K., Melief C.J.M., Zinkernagel R.M., Hengartner H. Decreased tumor surveillance in perforin-deficient mice. J. Exp. Med. 1996; 184: 1781–1790
  • Drappa J., Vaishnaw A.K., Sullivan K.E., Chu J.-L., Elkon K.B. Fas gene mutations in the Canale-Smith syndrome, an inherited lymphoproliferative disorder associated with autoimmunity. N. Engl. J. Med. 1996; 335: 1643–1649
  • Davidson W.F., Giese T., Fredrickson T.N. Spontaneous development of plasmocytoid tumors in mice with defective Fas-Fas ligand interactions. J. Exp. Med. 1998; 187: 1825–1838
  • Landowski T.H., Ou N., Buyksal I., Painter J.S., Dalton W.S. Mutations in the Fas antigen in patients with multiple myeloma. Blood 1997; 90: 4266–4270
  • Smith M.J., Kelly J.M., Baxter A.G., Korner H., Sedgwick J.D. An essential role of tumor necrosis factor in natural killer cell-mediated tumor rejection in the peritoneum. J. Exp. Med. 1998; 188: 1611–1619
  • Ito D., Back T.C., Shakhov A.N., Wiltrout R.H., Nedospasov S.A. Mice with a targeted mutation in lymphotoxin-α exhibit enhanced tumor growth and meta-stases: Impaired NK cell development and recruitment. J. Immunol. 1999; 163: 2809–2815
  • Hayward A.R., Levy J., Facchetii F., Notarangelo L., Ochs H.D., Etzioni A., Bonnefoy J.-Y., Cosyns M., Weinberg A. Cholangiopathy and tumors of the pancreas, liver and biliary tree in boys with X-linked immunodeficiency with hyper-IgM. J. Immunol. 1997; 158: 977–983
  • Ostenstand B., Giliani S., Mellbye O.J., Nilsen B.R., Abrahamsen T. A boy with X-linked hyper-IgM syndrome and natural killer cell deficiency. Clin. Exp. Immunol. 1997; 107: 230–234
  • Djerbi M., Screpanti V., Catrina A.I., Bogen B., Biberfeld P., Grandien A. The inhibitor of death receptor signaling, FLICE-inhibitory protein defines a new class of tumor progression factors. J. Exp. Med. 1999; 190: 1025–1031
  • Medema J.P., Jong J. de, Hall T. van, Melief C.J.M., Offringa R. Immune escape of tumors in vivo by expression of cellular FLICE-inhibitory protein. J. Exp. Med. 1999; 190: 133–138

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.