54
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Regulation of Lineage Commitment during Lymphocyte Development

&
Pages 45-64 | Published online: 10 Jul 2009

References

  • Weissman I. L. Stem cells: units of development, units of regeneration, and units in evolution. Cell 2000; 100(1)157
  • Arnold H. H., Braun T. Genetics of muscle determination and development. Curr. Top. Dev. Biol. 2000; 48: 129
  • Black B. L., Olson E. N. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu. Rev. Cell Dev. Biol. 1988; 14: 167
  • Firulli A. B., Olson E. N. Modular regulation of muscle gene transcription: a mechanism for muscle cell diversity. Trends Genet. 1997; 13(9)364
  • Boryeki A. G., Emerson C. P. Multiple tissue interactions and signal transduction pathways control somite myogenesis. Curr. Top. Dev. Biol. 2000; 48: 165
  • Dzierzak E., Medvinsky A., de Bruijn M. Qualitative and quantitative aspects of haematopoietic cell development in the mammalian embryo. Immunol. Today 1998; 19(5)228
  • Choi K. Hemangioblast development and regulation. Biochem. Cell Biol. 1998; 76(6)947
  • Morrison S., Uchida N., Weissman I. The biology of hematopoietic stem cells. Ann. Rev. Dev. Biol. 1995; 11: 35
  • Kawamoto H., Ohmura K., Katsura Y. Presence of progenitors restricted to T, B, or myeloid lineage, but absence of multipotent stem cells, in the murine fetal thymus. J. Immunol. 1998; 161(8)3799
  • Ikawa T., Kawamoto H., Fujimoto S., Katsura Y. Commitment of common T/Natural killer (NK) progenitors to unipotent T and NK progenitors in the murine fetal thymus revealed by a single progenitor assay. J. Exp. Med. 1999; 190(11)1617
  • Metealf D. Lineage commitment and maturation in hematopoietic cells: the case for extrinsic regulation. Blood 1998; 92(2)345
  • Allen R.D., III, Bender T. P., Siu G. c-Myb is essential for early T cell development. Genes Dev. 1999; 13(9)1073
  • McKercher S. R., Torbelt B. E., Anderson K. L., Henkel G. W., Vestal D. J., Baribault H., Klemsz M., Feeney A. J., Wu G. E., Paige C. J., Maki R. A. Targeted disruption of the PU.I gene results in multiple hematopoietic abnormalities. Embo J. 1996; 15(20)5647
  • Scott E. W., Simon M. C., Anastasi J., Singh H. Requirement of transcription factor PU.I in the development of multiple hematopoietic lineages. Science 1994; 265(5178)1573
  • Georgopoulos K., Moore D. D., Derfler B. Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment. Science 1992; 258(5083)808
  • Wang J. H., Nichogiannopoulou A., Wu L., Sun L., Sharpe A. H., Bigby M., Georgopoulos K. Selective deflects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 1996; 5(6)537
  • Georgopoulos K., Bigby M., Wang J. H., Molnar A., Wu P., Winandy S., Sharpe A. The Ikaros gene is required for the development of all lymphoid lineages. Cell 1994; 79(1)143
  • Morgan B., Sun L., Avitahl N., Andrikopoulos K., Ikeda T., Gonzales E., Wu P., Neben S., Georgopoulos K. Aiolos, a lymphoid restricted transcription factor that interacts with Ikaros to regulate lymphocyte differentiation. Embo J. 1997; 16(8)2004
  • Kelley C. M., Ikeda T., Koipally J., Avitahl N., Wu L., Georgopoulos K., Morgan B. A. Helios, a novel dimerization partner of Ikaros expressed in the earliest hematopoietic progenitors. Curr. Biol. 1998; 8(9)508
  • Hahm K., Cobb B. S., McCarty A. S., Brown K. E., Klug C. A., Lee R., Akashi K., Weissman I. L., Fisher A. G., Smale S. T. Helios, a T cell-restricted Ikaros family member that quantitatively associates with Ikaros at centromeric heterochromatin. Genes Dev. 1998; 12(6)782
  • Kondo M., Weissman I. L., Akashi K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 1997; 91(5)661
  • Kondo M., Akashi K., Domen J., Sugamura K., Weissman I. L. Bcl-2 rescues T lymphopoiesis, but not B or NK cell development, in common γ chain-deficient mice. Immunity 1997; 7(1)155
  • Akashi K., Kondo M., Weissman I. L. Role of interleukin-7 in T-cell development from hematopoietic stem cells. Immunol. Rev. 1998; 165: 13
  • von Freeden-Jeffry U, Vieira P., Lucian L. A., McNeil T., Burdach S. E., Murray R. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J. Exp. Med. 1995; 181(4)1519
  • Peschon J. J., Morrissey P. J., Grabstein K. H., Ramsdell F. J., Maraskovsky E., Gliniak B. C., Park L. S., Ziegler S. F., Williams D. E., Ware C. B. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J. Exp. Med. 1994; 180((5))
  • Okada S., Nakauchi H., Nagayoshi K., Nishikawa S., Miura Y., Suda T. In vivo and in vitro stem cell function of c-kit-and Sca-I-positive murine hematopoietic cells. Blood 1992; 80(12)3044
  • Katayama N., Shih J. P., Nishikawa S., Kina T., Clark S. C., Ogawa M. Stage-specific expression of c-kit protein by murine hematopoietic progenitors. Blood 1993; 82(8)2353
  • Lyman S. D., Brasel K., Rousseau A. M., Williams D. E. The flt3 ligand: a hematopoietic stem cell factor whose activities are distinct from steel factor. Stem Cells 1994; 12, (Suppl 1)
  • Mackarehtschian K., Hardin J. D., Moore K. A., Boast S., Goff S. P., Lemischka I. R. Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors. Immunity 1995; 3(1)147
  • Matsuzaki Y., Nakayama K., Toinita T., Isoda M., Loh D. Y., Nakauchi H. Role of bc1–2 in the development of lymphoid cells from the hematopoietic stem cell. Blood 1997; 89(3)853
  • Rodewald H. R., Ogawa M., Haller C., Waskow C., DiSanto J. P. Pro-thymocyte expansion by c-kit and the common cytokine receptor gamma chain is essential for repertoire formation. Immunity 1997; 6(3)265
  • Zhuang Y., Soriano P., Weintraub H. The helix-loop-helix gene E2A is required for B cell formation. Cell 1994; 79(5)875
  • Bain G., Maandag E. C., Izon D. J., Amsen D., Kruisbeek A. M., Weintraub B. C., Krop I., Schlissel M. S., Feeney A. J., van Roon M. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 1994; 79(5)885
  • Bain G., Maandag E.C. Robanus, Riele H.P. te, Feeney A. J., Sheehy A., Schlissel M., Shinton S. A., Hardy R. R., Murre C. Both E12 and E47 allow commitment to the B cell lineage. Immunity 1997; 6(2)145
  • Lin H., Grosschedl R. Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature 1995; 376(6537)263
  • Urbanck P., Wang Z. Q., Fetka I., Wagner E. F., Busslinger M. Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell 1994; 79(5)901
  • Thevenin C., Nutt S. L., Busslinger M. Early function of Pax5 (BSAP) before the pre-B cell receptor stage of B lymphopoiesis. J. Exp. Med. 1998; 188(4)735
  • Nutt S. L., Heavey B., Relink A. G., Busslinger M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 1999; 401(6753)556
  • Rolink A. G., Nutt S. L., Melchers F., Busslinger M. Long-term in vivo reconstitution of T-cell development by Pax5-deficient B-cell progenitors. Nature 1999; 401(6753)603
  • Enver T. B-cell commitment: Pax5 is the deciding factor. Curr. Biol. 1999; 9(24)R933
  • Chiang M. Y., Monroe J. G. BSAP/Pax5A expression blocks survival and expansion of early myeloid cells implicating its involvement in maintaining commitment to the B-lymphocyte lineage. Blood 1999; 94(11)3621
  • Schilham M. W., Oosterwegel M. A., Moerer P., Ya J., Boer P.A. de, Wetering M. van de, Verbeek S., Lamers W. H., Kruisbeek A. M., Cumano A., Clevers H. Defects in cardiac outflow tract formation and pro-B-lymphocyte expansion in mice lacking Sox-4. Nature 1996; 380(6576)711
  • Schilham M. W., Moerer P., Cumano A., Clevers H. C. Sox-4 facilitates thymocyte differentiation. Eur. J. Immunol. 1997; 27(5)1292
  • Pui J. C., Aliman D., Xu L., DeRocco S., Karnell F. G., Bakkour S., Lee J. Y., Kadesch T., Hardy R. R., Aster J. C., Pear W. S. Notchl expression in early lymphopoiesis influences B versus T lineage determination. Immunity 1999; 11(3)299
  • Quong M. W., Harris D. P., Swain S. L., Murre C. E2A activity is induced during B-cell activation to promote immunoglobulin class switch recombination. Embo. J. 1999; 18(22)6307
  • Marine J., Winoto A. The human enhancer-binding protein Gata3 binds to several T-cell receptor regulatory elements. Proc. Natl. Acad. Sci. USA 1991; 88(16)7284
  • Ko L. J., Yamamoto M., Leonard M. W., George K. M., Ting P., Engel J. D. Murine and human T-lymphocyte GATA-3 factors mediate transcription through a cis-regulatory element within the human T-cell receptor delta gene enhancer. Mol. Cell Biol. 1991; 11(5)2778
  • Ho I. C., Vorhees P., Marin N., Oakley B. K., Tsai S. F., Orkin S. H., Leiden J. M. Human GATA-3: a lineage-restricted transcription factor that regulates the expression of the T cell receptor alpha gene. Embo J. 1991; 10(5)1187
  • Pandolfi P. P., Roth M. E., Karis A., Leonard M. W., Dzierzak E., Grosveld F. G., Engel J. D., Lindenbaum M. H. Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver hematopoiesis. Nat. Genet. 1995; 11(1)40
  • Ting C. N., Olson M. C., Barton K. P., Leiden J. M. Transcription factor GATA-3 is required for development of the T-cell lineage. Nature 1996; 384(6608)474
  • Hendriks R. W., Nawijn M. C., Engel J. D., van Doorninck H, Grosveld F., Karis A. Expression of the transcription factor GATA-3 is required for the development of the earliest T cell progenitors and correlates with stages of cellular proliferation in the thymus. Eur. J. Immunol. 1999; 29(6)1912
  • Waterman M. L., Jones K. A. Purification of TCF-l alpha, a T-cell-specific transcription factor that activates the T-cell receptor C alpha gene enhancer in a context-dependent manner. New Biol. 1990; 2(7)621
  • Castrop J., Wichen D. van, Koomans-Bitler M., Wetering M. van de, Wezer R. de, Dongen J. van, Clevers H. The human TCF-1 gene encodes a nuclear DNA-binding protein uniquely expressed in normal and neoplastic T-lineage lymphocytes. Blood 1995; 86(8)3050
  • Wetering M. van de, Oosterwegel M., Dooijes D., Clevers H. Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. Embo J. 1991; 10(1)123
  • Oosterwegel M., van deWetering M, Timmerman J., Kruisbeek A., Destree O., Meijlink F., Clevers H. Differential expression of the HMG box factors TCF-1 and LEF-I during murine embryogcnesis. Development 1993; 118(2)439
  • Oosterwegel M., van deWetering M, Dooijes D., Klomp L., Winoto A., Georgopoulos K., Meijlink F., Clevers H. Cloning of murine TCF-1, a T cell-specific transcription factor interacting with functional motifs in the CD3-epsilon and T cell receptor alpha enhancers. J. Exp. Med. 1991; 173(5)1133
  • Verbeek S., Izon D., Hofhuis F., Robanus-Maandag F., Ricle H. te, Wetering M. van de, Oosterwegel M., Wilson A., MacDonald H. R., Clevers H. An HMG-box-containing T-cell factor required for thymocyte differentiation. Nature 1995; 374(6517)70
  • Schilham M. W., Wilson A., Moerer P., Benaissa-Trouw B. J., Cumano A., Clevers H. C. Critical involvement of Tcf-1 in expansion of thymocytes. J. Immunol. 1998; 161: 3984
  • Okamura R., Sigvardsson M., Galceron J., Verbeek S., Clevers H., Grosscedl R. Overlapping functions of Tcf-1 and Lef-1 in T lymphocyte development. Immunity 1998; 8: 11
  • Okamura R. M., Sigvardsson M., Galceran J., Verbeek S., Clevers H., Grosschedl R. Redundant regulation of T cell differentiation and TCRalpha gene expression by the transcription factors LEF-1 and TCF-1. Immunity 1998; 8(1)11
  • Molenaar M., van D.W.M, Oosterwegel M., Peterson M. J., Godsave S., Korinek V., Roose J., Destree O., Clevers H. XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 1996; 86(3)391
  • Staal F. J., Burgering B. M., van deWetering M, Clevers H. C. Tcf-1-mediated transcription in T lymphocytes: differential role for glycogen synthase kinase-3 in fibroblasts and T cells. Int. Immunol. 1999; 11(3)317
  • Cadigan K. M., Nusse R. Wnt signaling: a common theme in animal development. Genes & Dev. 1998; 12: 1
  • Young C. S., Kitamura M., Hardy S., Kitajewski J. Wnt-l induces growth, cylosolic β-catenin, and Tcf/Lef transcriptional activation in Rat-l fibroblasts. Mol. Cell Biol. 1998; 18(5)2474
  • Korinek V., Barker N., Willert K., Molenaar M., Roose J., Wagenaar G., Markman M., Lamers W., Desiree O., Clevers H. Two members of the Tcf family implicated in Wnt/β-catenin signaling during embryogenesis in the mouse. Mol. Cell Biol. 1998; 18(3)1248
  • Clevers H., van deWetering M. TCF/LEF factor earn their wings. Trends Genet. 1997; 13(12)485
  • Hattori N., Kawamoto H., Fujimoto S., Kuno K., Katsura Y. Involvement of transcription factors TCF-1 and GATA-3 in the initiation of the earliest step of T cell development in the thymus. J. Exp. Med. 1996; 184(3)1137
  • Muthusamy N., Barton K., Leiden J. M. Defective activation and survival of T cells lacking the Ets-1 transcription factor. Nature 1995; 377(6550)639
  • Langlands K., Yin X., Anand G., Prochownik E. V. Differential interactions of Id proteins with basic-helix-loop-helix transcription factors. J. Biol. Chem. 1997; 272(32)19785
  • Rivera R. R., Johns C. P., Quan J., Johnson R. S., Murre C. Thymocyte selection is regulated by the helix-loop-helix inhibitor protein, Id3. Immunity 2000; 12(1)17
  • Morrow M. A., Mayer E. W., Perez C. A., Adlam M., Siu G. Overexpression of the Helix-Loop-Helix protein Id2 blocks T cell development at multiple stages. Mol. Immunol. 1999; 36(8)491
  • Janatpour M. J., McMaster M. T., Genbaeev O., Zhou Y., Dong J., Cross J. C., Israel M. A., Fisher S. J. Id-2 regulates critical aspects of human cytotrophoblast differentiation, invasion and migration. Development 2000; 127(3)549
  • Yokota Y., Mansouri A., Mori S., Sugawara S., Adachi S., Nishikawa S., Gruss P. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 1999; 397(6721)702
  • Heemskerk M. H., Blom B., Nolan G., Stegmann A. P., Bakker A. Q., Weijer K., Res P. C., Spits H. Inhibition of T cell and promotion of natural killer cell development by the dominant negative helix loop helix factor Id3. J. Exp. Med. 1997; 186(9)1597
  • Artavanis-Tsakonas S., Rand M. D., Lake R. J. Notch signaling: cell fate control and signal integration in development. Science 1999; 284(5415)770
  • Kim H. K., Siu G. The notch pathway intermediate HES-1 silences CD4 gene expression. Mol. Cell Biol. 1998; 18(12)
  • Robey E., Chang D., Itano A., Cado D., Alexander H., Lans D., Weinmaster G., Salmon P. An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell 1996; 87(3)483
  • Radtke F., Wilson A., Stark G., Bauer M., van Meerwijk J, MacDonald H. R., Aguet M. Deficient T cell fate specification in mice with an induced inactivation of Notchl. Immunity 1999; 10(5)547
  • Kaneta M., Osawa M., Sudo K., Nakauchi H., Farr A. G., Takahama Y. A role for pref-l and HES-l in thymocyte development. J. Immunol. 2000; 164(1)256
  • Tomita K., Hattori M., Nakamura E., Nakanishi S., Minato N., Kageyama R. The bHLH gene Hesl is essential for expansion of early T cell precursors. Genes Dev. 1999; 13(9)1203
  • John B. M., Bielke W., Pear W. S., Osborne B. A. Protective effects of notch-l on TCR-induced apoptosis. J. Immunol. 1999; 162(2)635
  • Hasserjian R. P., Aster J. C., Davi F., Weinberg D. S., Sklar J. Modulated expression of notchl during thymocyte development. Blood 1996; 88(3)970
  • Felli M. P., Maroder M., Mitsiadis T. A., Campese A. F., Bellavia D., Vacca A., Mann R. S., Frati L., Lendahl U., Gulino A., Screpanti I. Expression pattern of notchl, 2 and 3 and Jagged 1 and 2 in lymphoid and stromal thymus components: distinct ligand-receptor interactions in intralhymic T cell development. Int. Immunol. 1999; 11(7)1017
  • Deftos M. L., He Y. W., Ojala E. W., Bevan M. J. Correlating notch signaling with thymocyte maturation. Immunity 1998; 9(6)777

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.