261
Views
22
CrossRef citations to date
0
Altmetric
Review Articles

Novel Findings in Drug-Induced Dendritic Cell Tolerogenicity

, &
Pages 574-607 | Published online: 12 Nov 2010

REFERENCES

  • Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol 2003;21:685–711.
  • Hawiger D, Inaba K, Dorsett Y, Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 2001;194:769–779.
  • Rutella S, Danese S, Leone G. Tolerogenic dendritic cells: Cytokine modulation comes of age. Blood 2006;108:1435–1440.
  • Mittal R, Prasadarao NV. Outer membrane protein A expression in Escherichia coli K1 is required to prevent the maturation of myeloid dendritic cells and the induction of IL-10 and TGF-beta. J Immunol 2008;181:2672–2682.
  • Xia CQ, Peng R, Beato F, Clare-Salzler MJ. Dexamethasone induces IL-10-producing monocyte-derived dendritic cells with durable immaturity. Scand J Immunol 2005;62:45–54.
  • Hagihara M, Higuchi A, Tamura N, Platelets, after exposure to a high shear stress, induce IL-10-producing, mature dendritic cells in vitro. J Immunol 2004;172:5297–5303.
  • Anderson AE, Swan DJ, Sayers BL, LPS activation is required for migratory activity and antigen presentation by tolerogenic dendritic cells. J Leukoc Biol 2009;85:243–250.
  • Brenk M, Scheler M, Koch S, Tryptophan deprivation induces inhibitory receptors ILT3 and ILT4 on dendritic cells favoring the induction of human CD4+CD25 +Foxp3+ T regulatory cells. J Immunol 2009;183:145–154.
  • Manavalan JS, Rossi PC, Vlad G, High expression of ILT3 and ILT4 is a general feature of tolerogenic dendritic cells. Transpl Immunol 2003;11:245–258.
  • Peng Y, Latchman Y, Elkon KB. Ly6C(low) monocytes differentiate into dendritic cells and cross-tolerize T cells through PDL-1. J Immunol 2009;182:2777–2785.
  • Pangault C, Le Friec G, Caulet-Maugendre S, Lung macrophages and dendritic cells express HLA-G molecules in pulmonary diseases. Hum Immunol 2002;63:83–90.
  • Hackstein H, Thomson AW. Dendritic cells: Emerging pharmacological targets of immunosuppressive drugs. Nat Rev Immunol 2004;4:24–34.
  • Adorini L, Giarratana N, Penna G. Pharmacological induction of tolerogenic dendritic cells and regulatory T cells. Semin Immunol 2004;16:127–134.
  • Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001;19:683–765.
  • Steinbrink K, Wolfl M, Jonuleit H, Induction of tolerance by IL-10-treated dendritic cells. J Immunol 1997;159:4772–4780.
  • Takayama T, Nishioka Y, Lu L, Retroviral delivery of viral interleukin-10 into myeloid dendritic cells markedly inhibits their allostimulatory activity and promotes the induction of T-cell hyporesponsiveness. Transplantation 1998;66:1567–1574.
  • Steinbrink K, Graulich E, Kubsch S, CD4(+) and CD8(+) anergic T cells induced by interleukin-10-treated human dendritic cells display antigen-specific suppressor activity. Blood 2002;99:2468–2476.
  • Faunce DE, Terajewicz A, Stein-Streilein J. Cutting edge: In vitro-generated tolerogenic APC induce CD8+ T regulatory cells that can suppress ongoing experimental autoimmune encephalomyelitis. J Immunol 2004;172:1991–1995.
  • Luo X, Tarbell KV, Yang H, Dendritic cells with TGF-beta1 differentiate naive CD4+CD25- T cells into islet-protective Foxp3+ regulatory T cells. Proc Natl Acad Sci U S A 2007;104:2821–2826.
  • Carbonneil C, Saidi H, Donkova-Petrini V, Weiss L. Dendritic cells generated in the presence of interferon-alpha stimulate allogeneic CD4+ T-cell proliferation: Modulation by autocrine IL-10, enhanced T-cell apoptosis and T regulatory type 1 cells. Int Immunol 2004;16:1037–1052.
  • Verginis P, Li HS, Carayanniotis G. Tolerogenic semimature dendritic cells suppress experimental autoimmune thyroiditis by activation of thyroglobulin-specific CD4+CD25+ T cells. J Immunol 2005;174:7433–7439.
  • Chorny A, Gonzalez-Rey E, Fernandez-Martin A, Vasoactive intestinal peptide induces regulatory dendritic cells with therapeutic effects on autoimmune disorders. Proc Natl Acad Sci U S A 2005;102:13562–13567.
  • Della Bella S, Nicola S, Timofeeva I, Are interleukin-16 and thrombopoietin new tools for the in vitro generation of dendritic cells? Blood 2004;104:4020–4028.
  • Mennechet FJ, Uze G. Interferon-lambda-treated dendritic cells specifically induce proliferation of FOXP3-expressing suppressor T cells. Blood 2006;107:4417–4423.
  • Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998;392:245–252.
  • Banchereau J, Briere F, Caux C, Immunobiology of dendritic cells. Annu Rev Immunol 2000;18:767–811.
  • Cella M, Salio M, Sakakibara Y, Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J Exp Med 1999;189:821–829.
  • Fritz JH, Girardin SE, Fitting C, Synergistic stimulation of human monocytes and dendritic cells by Toll-like receptor 4 and NOD1- and NOD2-activating agonists. Eur J Immunol 2005;35:2459–2470.
  • Cella M, Scheidegger D, Palmer-Lehmann K, Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med 1996;184:747–752.
  • Tak PP, Firestein GS. NF-kappaB: A key role in inflammatory diseases. J Clin Invest 2001;107:7–11.
  • Yao J, Mackman N, Edgington TS, Fan ST. Lipopolysaccharide induction of the tumor necrosis factor-alpha promoter in human monocytic cells. Regulation by Egr-1, c-Jun, and NF-kappaB transcription factors. J Biol Chem 1997;272:17795–17801.
  • Napolitani G, Bortoletto N, Racioppi L, Activation of src-family tyrosine kinases by LPS regulates cytokine production in dendritic cells by controlling AP-1 formation. Eur J Immunol 2003;33:2832–2841.
  • Piemonti L, Monti P, Allavena P, Glucocorticoids affect human dendritic cell differentiation and maturation. J Immunol 1999;162:6473–6481.
  • Piemonti L, Monti P, Sironi M, Vitamin D3 affects differentiation, maturation, and function of human monocyte-derived dendritic cells. J Immunol 2000;164:4443–4451.
  • Scheinman RI, Cogswell PC, Lofquist AK, Baldwin AS, Jr. Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids. Science 1995;270:283–286.
  • Auphan N, DiDonato JA, Rosette C, Immunosuppression by glucocorticoids: Inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science 1995;270:286–290.
  • Scheinman RI, Gualberto A, Jewell CM, Characterization of mechanisms involved in transrepression of NF-kappa B by activated glucocorticoid receptors. Mol Cell Biol 1995;15:943–953.
  • De Bosscher K, Vanden Berghe W, Vermeulen L, Glucocorticoids repress NF-kappaB-driven genes by disturbing the interaction of p65 with the basal transcription machinery, irrespective of coactivator levels in the cell. Proc Natl Acad Sci U S A 2000;97:3919–3924.
  • Berer A, Stockl J, Majdic O, 1,25-Dihydroxyvitamin D(3) inhibits dendritic cell differentiation and maturation in vitro. Exp Hematol 2000;28: 575–583.
  • Penna G, Adorini L. 1 Alpha,25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J Immunol 2000;164:2405–2411.
  • Cohen N, Mouly E, Hamdi H, GILZ expression in human dendritic cells redirects their maturation and prevents antigen-specific T lymphocyte response. Blood 2006;107:2037–2044.
  • Dong X, Lutz W, Schroeder TM, Regulation of relB in dendritic cells by means of modulated association of vitamin D receptor and histone deacetylase 3 with the promoter. Proc Natl Acad Sci U S A 2005;102:16007–16012.
  • Szeto FL, Sun J, Kong J, Involvement of the vitamin D receptor in the regulation of NF-kappaB activity in fibroblasts. J Steroid Biochem Mol Biol 2007;103:563–566.
  • Yang J, Bernier SM, Ichim TE, LF15–0195 generates tolerogenic dendritic cells by suppression of NF-kappaB signaling through inhibition of IKK activity. J Leukoc Biol 2003;74:438–447.
  • Woltman AM, de Fijter JW, Kamerling SW, The effect of calcineurin inhibitors and corticosteroids on the differentiation of human dendritic cells. Eur J Immunol 2000;30:1807–1812.
  • Tajima K, Amakawa R, Ito T, Immunomodulatory effects of cyclosporin A on human peripheral blood dendritic cell subsets. Immunology 2003;108: 321–328.
  • Hackstein H, Taner T, Logar AJ, Thomson AW. Rapamycin inhibits macropinocytosis and mannose receptor-mediated endocytosis by bone marrow-derived dendritic cells. Blood 2002;100:1084–1087.
  • Szabo G, Gavala C, Mandrekar P. Tacrolimus and cyclosporine A inhibit allostimulatory capacity and cytokine production of human myeloid dendritic cells. J Investig Med 2001;49:442–449.
  • Shimizu K, Fujii S, Fujimoto K, Tacrolimus (FK506) treatment of CD34 +hematopoietic progenitor cells promote the development of dendritic cells that drive CD4+ T cells toward Th2 responses. J Leukoc Biol 2000;68:633–640.
  • Woltman AM, de Fijter JW, Kamerling SW, Rapamycin induces apoptosis in monocyte- and CD34-derived dendritic cells but not in monocytes and macrophages. Blood 2001;98:174–180.
  • Monti P, Mercalli A, Leone BE, Rapamycin impairs antigen uptake of human dendritic cells. Transplantation 2003;75:137–145.
  • Hackstein H, Taner T, Zahorchak AF, Rapamycin inhibits IL-4-induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo. Blood 2003;101:4457–4463.
  • Woltman AM, Van Der Kooij SW, Coffer PJ, Rapamycin specifically interferes with GM-CSF signaling in human dendritic cells, leading to apoptosis via increased p27KIP1 expression. Blood 2003;101:1439–1445.
  • Hackstein H, Morelli AE, Larregina AT, Aspirin inhibits in vitro maturation and in vivo immunostimulatory function of murine myeloid dendritic cells. J Immunol 2001;166:7053–7062.
  • Mehling A, Grabbe S, Voskort M, Mycophenolate mofetil impairs the maturation and function of murine dendritic cells. J Immunol 2000;165:2374–2381.
  • Thompson AG, Thomas R. Induction of immune tolerance by dendritic cells: Implications for preventative and therapeutic immunotherapy of autoimmune disease. Immunol Cell Biol 2002;80:509–519.
  • Nencioni A, Grunebach F, Zobywlaski A, Dendritic cell immunogenicity is regulated by peroxisome proliferator-activated receptor gamma. J Immunol 2002;169:1228–1235.
  • Kota BP, Huang TH, Roufogalis BD. An overview on biological mechanisms of PPARs. Pharmacol Res 2005;51:85–94.
  • Michalik L, Auwerx J, Berger JP, International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev 2006;58:726–741.
  • Lovett-Racke AE, Hussain RZ, Northrop S, Peroxisome proliferator-activated receptor alpha agonists as therapy for autoimmune disease. J Immunol 2004;172:5790–5798.
  • Lee KS, Park SJ, Kim SR, Modulation of airway remodeling and airway inflammation by peroxisome proliferator-activated receptor gamma in a murine model of toluene diisocyanate-induced asthma. J Immunol 2006;177:5248–5257.
  • Belvisi MG, Hele DJ, Birrell MA. Peroxisome proliferator-activated receptor gamma agonists as therapy for chronic airway inflammation. Eur J Pharmacol 2006;533:101–109.
  • Shiojiri T, Wada K, Nakajima A, PPAR gamma ligands inhibit nitrotyrosine formation and inflammatory mediator expressions in adjuvant-induced rheumatoid arthritis mice. Eur J Pharmacol 2002;448:231–238.
  • Kielian T, Drew PD. Effects of peroxisome proliferator-activated receptor-gamma agonists on central nervous system inflammation. J Neurosci Res 2003;71:315–325.
  • Marx N, Kehrle B, Kohlhammer K, PPAR activators as antiinflammatory mediators in human T lymphocytes: Implications for atherosclerosis and transplantation-associated arteriosclerosis. Circ Res 2002;90:703–710.
  • Gosset P, Charbonnier AS, Delerive P, Peroxisome proliferator-activated receptor gamma activators affect the maturation of human monocyte-derived dendritic cells. Eur J Immunol 2001;31:2857–2865.
  • Appel S, Mirakaj V, Bringmann A, PPAR-gamma agonists inhibit toll-like receptor-mediated activation of dendritic cells via the MAP kinase and NF-kappaB pathways. Blood 2005;106:3888–3894.
  • Klotz L, Dani I, Edenhofer F, Peroxisome proliferator-activated receptor gamma control of dendritic cell function contributes to development of CD4+ T cell anergy. J Immunol 2007;178:2122–2131.
  • Wei-guo Z, Hui Y, Shan L, PPAR-gamma agonist inhibits Ang II-induced activation of dendritic cells via the MAPK and NF-kappaB pathways. Immunol Cell Biol 2010;88:305–312.
  • Harizi H, Grosset C, Gualde N. Prostaglandin E2 modulates dendritic cell function via EP2 and EP4 receptor subtypes. J Leukoc Biol 2003;73:756–763.
  • Winn HR, Rubio R, Berne RM. Brain adenosine concentration during hypoxia in rats. Am J Physiol 1981;241:H235–H242.
  • Van Belle H, Goossens F, Wynants J. Formation and release of purine catabolites during hypoperfusion, anoxia, and ischemia. Am J Physiol 1987;252:H886–H893.
  • Marquardt DL, Gruber HE, Wasserman SI. Adenosine release from stimulated mast cells. Proc Natl Acad Sci U S A 1984;81:6192–6196.
  • Cronstein BN. Adenosine, an endogenous anti-inflammatory agent. J Appl Physiol 1994;76:5–13.
  • Huang S, Apasov S, Koshiba M, Sitkovsky M. Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood 1997;90:1600–1610.
  • Eigler A, Greten TF, Sinha B, Endogenous adenosine curtails lipopolysaccharide-stimulated tumor necrosis factor synthesis. Scand J Immunol 1997;45:132–139.
  • Hoskin DW, Reynolds T, Blay J. Adenosine as a possible inhibitor of killer T-cell activation in the microenvironment of solid tumors. Int J Cancer 1994;59: 854–855.
  • la Sala A, Ferrari D, Corinti S, Extracellular ATP induces a distorted maturation of dendritic cells and inhibits their capacity to initiate Th1 responses. J Immunol 2001;166:1611–1617.
  • Yang D, Zhang Y, Nguyen HG, The A2B adenosine receptor protects against inflammation and excessive vascular adhesion. J Clin Invest 2006;116: 1913–1923.
  • Thiel M, Caldwell CC, Sitkovsky MV. The critical role of adenosine A2A receptors in downregulation of inflammation and immunity in the pathogenesis of infectious diseases. Microbes Infect 2003;5:515–526.
  • Heystek HC, Thierry AC, Soulard P, Moulon C. Phosphodiesterase 4 inhibitors reduce human dendritic cell inflammatory cytokine production and Th1-polarizing capacity. Int Immunol 2003;15:827–835.
  • Wilson JM, Ross WG, Agbai ON, The A2B adenosine receptor impairs the maturation and immunogenicity of dendritic cells. J Immunol 2009;182:4616–4623.
  • Tournier JN, Quesnel-Hellmann A, Mathieu J, Anthrax edema toxin cooperates with lethal toxin to impair cytokine secretion during infection of dendritic cells. J Immunol 2005;174:4934–4941.
  • Bagley KC, Abdelwahab SF, Tuskan RG, Pertussis toxin and the adenylate cyclase toxin from Bordetella pertussis activate human monocyte-derived dendritic cells and dominantly inhibit cytokine production through a cAMP-dependent pathway. J Leukoc Biol 2002;72:962–969.
  • Lavelle EC, McNeela E, Armstrong ME, Cholera toxin promotes the induction of regulatory T cells specific for bystander antigens by modulating dendritic cell activation. J Immunol 2003;171:2384–2392.
  • Hickey FB, Brereton CF, Mills KH. Adenylate cycalse toxin of Bordetella pertussis inhibits TLR-induced IRF-1 and IRF-8 activation and IL-12 production and enhances IL-10 through MAPK activation in dendritic cells. J Leukoc Biol 2008;84:234–243.
  • Li K, Anderson KJ, Peng Q, Cyclic AMP plays a critical role in C3a-receptor-mediated regulation of dendritic cells in antigen uptake and T-cell stimulation. Blood 2008;112:5084–5094.
  • Tao XL, Sun Y, Dong Y, A prospective, controlled, double-blind, cross-over study of tripterygium wilfodii hook F in treatment of rheumatoid arthritis. Chin Med J (Engl) 1989;102:327–332.
  • Li YT, Qin YZ, Qu Y, Gong JZ. Hydroxypiperaquine phosphate in treating chloroquine resistant falciparum malaria. Chin Med J (Engl) 1981;94:303–304.
  • Qin WZ, Zhu GD, Yang SM, Clinical observations on Tripterygium wilfordii in treatment of 26 cases of discoid lupus erythematosus. J Tradit Chin Med 1983;3:131–132.
  • Gu WZ, Brandwein SR. Inhibition of type II collagen-induced arthritis in rats by triptolide. Int J Immunopharmacol 1998;20:389–400.
  • Wu Y, Wang Y, Zhong C, The suppressive effect of triptolide on experimental autoimmune uveoretinitis by down-regulating Th1-type response. Int Immunopharmacol 2003;3:1457–1465.
  • Kupchan SM, Court WA, Dailey RG, Jr., Triptolide and tripdiolide, novel antileukemic diterpenoid triepoxides from Tripterygium wilfordii. J Am Chem Soc 1972;94:7194–7195.
  • Su D, Song Y, Li R. [Comparative clinical study of rheumatoid arthritis treated by triptolide and an ethyl acetate extract of Tripterygium wilfordii]. Zhong Xi Yi Jie He Za Zhi 1990;10:31, 144–146.
  • Chen X, Murakami T, Oppenheim JJ, Howard OM. Triptolide, a constituent of immunosuppressive Chinese herbal medicine, is a potent suppressor of dendritic-cell maturation and trafficking. Blood 2005;106:2409–2416.
  • Zhu KJ, Shen QY, Cheng H, Triptolide affects the differentiation, maturation and function of human dendritic cells. Int Immunopharmacol 2005;5:1415–1426.
  • Liu Q, Chen T, Chen H, Triptolide (PG-490) induces apoptosis of dendritic cells through sequential p38 MAP kinase phosphorylation and caspase 3 activation. Biochem Biophys Res Commun 2004;319:980–986.
  • Liu Q, Chen T, Chen G, Immunosuppressant triptolide inhibits dendritic cell-mediated chemoattraction of neutrophils and T cells through inhibiting Stat3 phosphorylation and NF-kappaB activation. Biochem Biophys Res Commun 2006;345:1122–1130.
  • Kim GY, Kim KH, Lee SH, Curcumin inhibits immunostimulatory function of dendritic cells: MAPKs and translocation of NF-kappa B as potential targets. J Immunol 2005;174:8116–8124.
  • Kim HK, Lee JJ, Lee JS, Rosmarinic acid down-regulates the LPS-induced production of monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1alpha (MIP-1alpha) via the MAPK pathway in bone-marrow derived dendritic cells. Mol Cells 2008;26:583–589.
  • Chen Y, Yang C, Jin N, Sinomenine promotes differentiation but impedes maturation and co-stimulatory molecule expression of human monocyte-derived dendritic cells. Int Immunopharmacol 2007;7:1102–1110.
  • Toth BI, Benko S, Szollosi AG, Transient receptor potential vanilloid-1 signaling inhibits differentiation and activation of human dendritic cells. FEBS Lett 2009;583:1619–1624.
  • Rios JL. Effects of triterpenes on the immune system. J Ethnopharmacol 2010;128:1–14.
  • Yoneyama S, Kawai K, Tsuno NH, Epigallocatechin gallate affects human dendritic cell differentiation and maturation. J Allergy Clin Immunol 2008;121:209–214.
  • Arrighi JF, Rebsamen M, Rousset F, A critical role for p38 mitogen-activated protein kinase in the maturation of human blood-derived dendritic cells induced by lipopolysaccharide, TNF-alpha, and contact sensitizers. J Immunol 2001;166:3837–3845.
  • Ardeshna KM, Pizzey AR, Devereux S, The PI3 kinase, p38 SAP kinase, and NF-kappaB signal transduction pathways are involved in the survival and maturation of lipopolysaccharide-stimulated human monocyte-derived dendritic cells. Blood 2000;96:1039–1046.
  • Hehner SP, Heinrich M, Bork PM, Sesquiterpene lactones specifically inhibit activation of NF-kappa B by preventing the degradation of I kappa B-alpha and I kappa B-beta. J Biol Chem 1998;273:1288–1297.
  • Hehner SP, Hofmann TG, Droge W, Schmitz ML. The antiinflammatory sesquiterpene lactone parthenolide inhibits NF-kappa B by targeting the I kappa B kinase complex. J Immunol 1999;163:5617–5623.
  • Kang BY, Chung SW, Kim TS. Inhibition of interleukin-12 production in lipopolysaccharide-activated mouse macrophages by parthenolide, a predominant sesquiterpene lactone in Tanacetum parthenium: Involvement of nuclear factor-kappaB. Immunol Lett 2001;77:159–163.
  • Takaesu G, Kishida S, Hiyama A, TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol Cell 2000;5:649–658.
  • Kopp E, Medzhitov R, Carothers J, ECSIT is an evolutionarily conserved intermediate in the Toll/IL-1 signal transduction pathway. Genes Dev 1999;13:2059–2071.
  • Ninomiya-Tsuji J, Kishimoto K, Hiyama A, The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 1999;398:252–256.
  • Wallach D, Varfolomeev EE, Malinin NL, Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol 1999;17:331–367.
  • Ichijo H, Nishida E, Irie K, Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 1997;275:90–94.
  • Nishitoh H, Saitoh M, Mochida Y, ASK1 is essential for JNK/SAPK activation by TRAF2. Mol Cell 1998;2:389–395.
  • Uchi H, Arrighi JF, Aubry JP, The sesquiterpene lactone parthenolide inhibits LPS- but not TNF-alpha-induced maturation of human monocyte-derived dendritic cells by inhibition of the p38 mitogen-activated protein kinase pathway. J Allergy Clin Immunol 2002;110:269–276.
  • Chen XL, Grey JY, Thomas S, Sphingosine kinase-1 mediates TNF-alpha-induced MCP-1 gene expression in endothelial cells: Upregulation by oscillatory flow. Am J Physiol Heart Circ Physiol 2004;287:H1452–H1458.
  • Wu W, Mosteller RD, Broek D. Sphingosine kinase protects lipopolysaccharide-activated macrophages from apoptosis. Mol Cell Biol 2004;24:7359–7369.
  • Jin Y, Knudsen E, Wang L, Sphingosine 1-phosphate is a novel inhibitor of T-cell proliferation. Blood 2003;101:4909–4915.
  • Spiegel S. Sphingosine 1-phosphate: a prototype of a new class of second messengers. J Leukoc Biol 1999;65:341–344.
  • Ott VL, Cambier JC. Introduction: Multifaceted roles of lipids and their catabolites in immune cell signaling. Semin Immunol 2002;14:1–6.
  • French KJ, Schrecengost RS, Lee BD, Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res 2003;63:5962–5969.
  • Jung ID, Lee JS, Kim YJ, Sphingosine kinase inhibitor suppresses dendritic cell migration by regulating chemokine receptor expression and impairing p38 mitogen-activated protein kinase. Immunology 2007;121:533–544.
  • Giordano D, Magaletti DM, Clark EA. Nitric oxide and cGMP protein kinase (cGK) regulate dendritic-cell migration toward the lymph-node-directing chemokine CCL19. Blood 2006;107:1537–1545.
  • Roncarolo MG, Gregori S, Battaglia M, Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev 2006;212:28–50.
  • Chang CC, Ciubotariu R, Manavalan JS, Tolerization of dendritic cells by T(S) cells: The crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol 2002;3:237–243.
  • Svajger U, Obermajer N, Jeras M. Dendritic cells treated with resveratrol during differentiation from monocytes gain substantial tolerogenic properties upon activation. Immunology 2010;129:525–535.
  • Penna G, Roncari A, Amuchastegui S, Expression of the inhibitory receptor ILT3 on dendritic cells is dispensable for induction of CD4+Foxp3+ regulatory T cells by 1,25-dihydroxyvitamin D3. Blood 2005;106:3490–3497.
  • Fedoric B, Krishnan R. Rapamycin downregulates the inhibitory receptors ILT2, ILT3, ILT4 on human dendritic cells and yet induces T cell hyporesponsiveness independent of FoxP3 induction. Immunol Lett 2008;120:49–56.
  • Buckland M, Jago CB, Fazekasova H, Aspirin-treated human DCs up-regulate ILT-3 and induce hyporesponsiveness and regulatory activity in responder T cells. Am J Transplant 2006;6:2046–2059.
  • Munn DH, Shafizadeh E, Attwood JT, Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med 1999;189:1363–1372.
  • Hwu P, Du MX, Lapointe R, Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J Immunol 2000;164:3596–3599.
  • Fallarino F, Vacca C, Orabona C, Functional expression of indoleamine 2,3-dioxygenase by murine CD8 alpha(+) dendritic cells. Int Immunol 2002;14:65–68.
  • Taylor MW, Feng GS. Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J 1991;5:2516–2522.
  • Munn DH, Sharma MD, Mellor AL. Ligation of B7–1/B7–2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J Immunol 2004;172:4100–4110.
  • Grohmann U, Fallarino F, Bianchi R, IL-6 inhibits the tolerogenic function of CD8 alpha+ dendritic cells expressing indoleamine 2,3-dioxygenase. J Immunol 2001;167:708–714.
  • Grohmann U, Fallarino F, Silla S, CD40 ligation ablates the tolerogenic potential of lymphoid dendritic cells. J Immunol 2001;166:277–283.
  • Munn DH, Zhou M, Attwood JT, Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 1998;281:1191–1193.
  • Mellor AL, Sivakumar J, Chandler P, Prevention of T cell-driven complement activation and inflammation by tryptophan catabolism during pregnancy. Nat Immunol 2001;2:64–68.
  • Sakurai K, Zou JP, Tschetter JR, Effect of indoleamine 2,3-dioxygenase on induction of experimental autoimmune encephalomyelitis. J Neuroimmunol 2002;129:186–196.
  • Belladonna ML, Grohmann U, Guidetti P, Kynurenine pathway enzymes in dendritic cells initiate tolerogenesis in the absence of functional IDO. J Immunol 2006;177:130–137.
  • Vogel CF, Goth SR, Dong B, Aryl hydrocarbon receptor signaling mediates expression of indoleamine 2,3-dioxygenase. Biochem Biophys Res Commun 2008;375:331–335.
  • Ball HJ, Sanchez-Perez A, Weiser S, Characterization of an indoleamine 2,3-dioxygenase-like protein found in humans and mice. Gene 2007;396: 203–213.
  • Jonsson ME, Franks DG, Woodin BR, The tryptophan photoproduct 6-formylindolo[3,2-b]carbazole (FICZ) binds multiple AHRs and induces multiple CYP1 genes via AHR2 in zebrafish. Chem Biol Interact 2009;181:447–454.
  • Quintana FJ, Basso AS, Iglesias AH, Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 2008;453:65–71.
  • Skov S, Rieneck K, Bovin LF, Histone deacetylase inhibitors: A new class of immunosuppressors targeting a novel signal pathway essential for CD154 expression. Blood 2003;101:1430–1438.
  • Reddy P, Sun Y, Toubai T, Histone deacetylase inhibition modulates indoleamine 2,3-dioxygenase-dependent DC functions and regulates experimental graft-versus-host disease in mice. J Clin Invest 2008;118:2562–2573.
  • Liu K, Victora GD, Schwickert TA, In vivo analysis of dendritic cell development and homeostasis. Science 2009;324:392–397.
  • Fogg DK, Sibon C, Miled C, A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 2006;311:83–87.
  • Varol C, Landsman L, Fogg DK, Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J Exp Med 2007;204:171–180.
  • Naik SH, Sathe P, Park HY, Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat Immunol 2007;8:1217–1226.
  • Onai N, Obata-Onai A, Schmid MA, Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat Immunol 2007;8:1207–1216.
  • Jakubzick C, Bogunovic M, Bonito AJ, Lymph-migrating, tissue-derived dendritic cells are minor constituents within steady-state lymph nodes. J Exp Med 2008;205:2839–2850.
  • Randolph GJ, Beaulieu S, Lebecque S, Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science 1998;282:480–483.
  • Kirsch BM, Zeyda M, Stuhlmeier K, The active metabolite of leflunomide, A77 1726, interferes with dendritic cell function. Arthritis Res Ther 2005;7:R694–R703.
  • Breedveld FC, Dayer JM. Leflunomide: Mode of action in the treatment of rheumatoid arthritis. Ann Rheum Dis 2000;59:841–849.
  • Migita K, Miyashita T, Ishibashi H, Suppressive effect of leflunomide metabolite (A77 1726) on metalloproteinase production in IL-1beta stimulated rheumatoid synovial fibroblasts. Clin Exp Immunol 2004;137:612–616.
  • Xie J, Qian J, Yang J, Critical roles of Raf/MEK/ERK and PI3K/AKT signaling and inactivation of p38 MAP kinase in the differentiation and survival of monocyte-derived immature dendritic cells. Exp Hematol 2005;33:564–572.
  • Richter K, Muschler P, Hainzl O, Buchner J. Coordinated ATP hydrolysis by the Hsp90 dimer. J Biol Chem 2001;276:33689–33696.
  • Crouvezier S, Powell B, Keir D, Yaqoob P. The effects of phenolic components of tea on the production of pro- and anti-inflammatory cytokines by human leukocytes in vitro. Cytokine 2001;13:280–286.
  • Al-Hanbali M, Ali D, Bustami M, Epicatechin suppresses IL-6, IL-8 and enhances IL-10 production with NF-kappaB nuclear translocation in whole blood stimulated system. Neuro Endocrinol Lett 2009;30:131–138.
  • Yang F, Oz HS, Barve S, The green tea polyphenol (-)-epigallocatechin-3-gallate blocks nuclear factor-kappa B activation by inhibiting I kappa B kinase activity in the intestinal epithelial cell line IEC-6. Mol Pharmacol 2001;60:528–533.
  • Hashimoto F, Ono M, Masuoka C, Evaluation of the anti-oxidative effect (in vitro) of tea polyphenols. Biosci Biotechnol Biochem 2003;67:396–401.
  • Bors W, Saran M. Radical scavenging by flavonoid antioxidants. Free Radic Res Commun 1987;2:289–294.
  • Mukhtar H, Katiyar SK, Agarwal R. Green tea and skin—Anticarcinogenic effects. J Invest Dermatol 1994;102:3–7.
  • Bode AM, Dong Z. Epigallocatechin 3-gallate and green tea catechins: United they work, divided they fail. Cancer Prev Res (Phila Pa) 2009;2:514–517.
  • Tachibana H. Molecular basis for cancer chemoprevention by green tea polyphenol EGCG. Forum Nutr 2009;61:156–169.
  • Brandt K, Bulfone-Paus S, Foster DC, Ruckert R. Interleukin-21 inhibits dendritic cell activation and maturation. Blood 2003;102:4090–4098.
  • Rutella S, Bonanno G, Procoli A, Hepatocyte growth factor favors monocyte differentiation into regulatory interleukin (IL)-10++IL-12low/neg accessory cells with dendritic-cell features. Blood 2006;108:218–227.
  • Eljaafari A, Li YP, Miossec P. IFN-gamma, as secreted during an alloresponse, induces differentiation of monocytes into tolerogenic dendritic cells, resulting in FoxP3+ regulatory T cell promotion. J Immunol 2009;183:2932–2945.
  • Adhami VM, Afaq F, Ahmad N. Suppression of ultraviolet B exposure-mediated activation of NF-kappaB in normal human keratinocytes by resveratrol. Neoplasia 2003;5:74–82.
  • Karin M, Yamamoto Y, Wang QM. The IKK NF-kappa B system: A treasure trove for drug development. Nat Rev Drug Discov 2004;3:17–26.
  • Athar M, Back JH, Kopelovich L, Multiple molecular targets of resveratrol: Anti-carcinogenic mechanisms. Arch Biochem Biophys 2009;486:95–102.
  • Pervaiz S, Holme AL. Resveratrol: its biologic targets and functional activity. Antioxid Redox Signal 2009;11:2851–2897.
  • Stewart JR, Ward NE, Ioannides CG, O’Brian CA. Resveratrol preferentially inhibits protein kinase C-catalyzed phosphorylation of a cofactor-independent, arginine-rich protein substrate by a novel mechanism. Biochemistry 1999;38:13244–13251.
  • Frojdo S, Cozzone D, Vidal H, Pirola L. Resveratrol is a class IA phosphoinositide 3-kinase inhibitor. Biochem J 2007;406:511–518.
  • Venkatachalam K, Mummidi S, Cortez DM, Resveratrol inhibits high glucose-induced PI3K/Akt/ERK-dependent interleukin-17 expression in primary mouse cardiac fibroblasts. Am J Physiol Heart Circ Physiol 2008;294:H2078–H2087.
  • Youn HS, Lee JY, Fitzgerald KA, Specific inhibition of MyD88-independent signaling pathways of TLR3 and TLR4 by resveratrol: Molecular targets are TBK1 and RIP1 in TRIF complex. J Immunol 2005;175:3339–3346.
  • Borrok MJ, Kiessling LL. Non-carbohydrate inhibitors of the lectin DC-SIGN. J Am Chem Soc 2007;129:12780–12785.
  • Geijtenbeek TB, van Vliet SJ, Engering A, Self- and nonself-recognition by C-type lectins on dendritic cells. Annu Rev Immunol 2004;22:33–54.
  • Sauder DN. Immunomodulatory and pharmacologic properties of imiquimod. J Am Acad Dermatol 2000;43:S6–S11.
  • Testerman TL, Gerster JF, Imbertson LM, Cytokine induction by the immunomodulators imiquimod and S-27609. J Leukoc Biol 1995;58: 365–372.
  • Gibson SJ, Lindh JM, Riter TR, Plasmacytoid dendritic cells produce cytokines and mature in response to the TLR7 agonists, imiquimod and resiquimod. Cell Immunol 2002;218:74–86.
  • Prins RM, Craft N, Bruhn KW, The TLR-7 agonist, imiquimod, enhances dendritic cell survival and promotes tumor antigen-specific T cell priming: relation to central nervous system antitumor immunity. J Immunol 2006;176:157–164.
  • Zhu KJ, Cen JP, Lou JX, Imiquimod inhibits the differentiation but enhances the maturation of human monocyte-derived dendritic cells. Int Immunopharmacol 2009;9:412–417.
  • Yang F, Ji G, Chen YB, Wang WZ. [The effects of sinomenine on the expresssion of ICAM-1 and IL-2 during the rejection of rat cardiac allograft]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2007;23:240–241.
  • Hilkens CM, Isaacs JD, Thomson AW. Development of dendritic cell-based immunotherapy for autoimmunity. Int Rev Immunol 2010;29:156–183.
  • van Duivenvoorde LM, Louis-Plence P, Apparailly F, Antigen-specific immunomodulation of collagen-induced arthritis with tumor necrosis factor-stimulated dendritic cells. Arthritis Rheum 2004;50:3354–3364.
  • Dhodapkar MV, Steinman RM, Krasovsky J, Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 2001;193:233–238.
  • Popov I, Li M, Zheng X, Preventing autoimmune arthritis using antigen-specific immature dendritic cells: A novel tolerogenic vaccine. Arthritis Res Ther 2006;8:R141.
  • Martin E, Capini C, Duggan E, Antigen-specific suppression of established arthritis in mice by dendritic cells deficient in NF-kappaB. Arthritis Rheum 2007;56:2255–2266.
  • Haase C, Yu L, Eisenbarth G, Markholst H. Antigen-dependent immunotherapy of non-obese diabetic mice with immature dendritic cells. Clin Exp Immunol 2010;160:331–339.
  • Harnaha J, Machen J, Wright M, Interleukin-7 is a survival factor for CD4+ CD25+ T-cells and is expressed by diabetes-suppressive dendritic cells. Diabetes 2006;55:158–170.
  • Ma L, Qian S, Liang X, Prevention of diabetes in NOD mice by administration of dendritic cells deficient in nuclear transcription factor-kappaB activity. Diabetes 2003;52:1976–1985.
  • Machen J, Harnaha J, Lakomy R, Antisense oligonucleotides down-regulating co-stimulation confer diabetes-preventive properties to nonobese diabetic mouse dendritic cells. J Immunol 2004;173:4331–4341.
  • Phillips B, Giannoukakis N, Trucco M. Dendritic cell-based therapy in Type 1 diabetes mellitus. Expert Rev Clin Immunol 2009;5:325–339.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.