477
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Anti-Galectin-3 Therapy: A New Chance for Multiple Myeloma and Ovarian Cancer?

, , , , , , , & show all
Pages 417-427 | Accepted 01 Apr 2014, Published online: 06 May 2014

REFERENCES

  • Di Lella S, Sundblad V, Cerliani JP, When galectins recognize glycans: from biochemistry to physiology and back again. Biochemistry 2011;50:7842–7857.
  • Laderach DJ, Compagno D, Toscano MA, Dissecting the signal transduction pathways triggered by galectin-glycan interactions in physiological and pathological settings. IUBMB Life 2010;62:1–13.
  • Teichberg VI, Silman I, Beitsch DD, Resheff G. A beta-D-galactoside binding protein from electric organ tissue of Electrophorus electricus. Proc Natl Acad Sci U S A 1975;72:1383–1387.
  • Ahmed H, Vasta GR. Galectins: conservation of functionally and structurally relevant amino acid residues defines two types of carbohydrate recognition domains. Glycobiology 1994 ;4(5):545–548.
  • Cooper DN. Galectinomics: finding themes in complexity. Biochim Biophys Acta 2002;19:2–3.
  • Cooper DN, Barondes SH. Evidence for export of a muscle lectin from cytosol to extracellular matrix and for a novel secretory mechanism. J Cell Biol 1990;110:1681–1691.
  • Chiariotti L, Salvatore P, Benvenuto G, Bruni CB. Control of galectin gene expression. Biochimie 1999;81:381–388.
  • Chiariotti L, Salvatore P, Frunzio R, Bruni CB. Galectin genes: regulation of expression. Glycoconj J 2004;19:441–449.
  • Liu FT, Yang RY, Hsu DK. Galectins in acute and chronic inflammation. Ann N Y Acad Sci 2012;1:80–91.
  • Newlaczyl AU, Yu LG. Galectin-3–a jack-of-all-trades in cancer. Cancer Lett 2011;313:123–128.
  • van den Brule F, Califice S, Castronovo V. Expression of galectins in cancer: a critical review. Glycoconj J 2004;19:537–542.
  • Lahm H, Andre S, Hoeflich A, Tumor galectinology: insights into the complex network of a family of endogenous lectins. Glycoconj J 2004;20:227–238.
  • Yang RY, Hsu DK, Yu L, Cell cycle regulation by galectin-12, a new member of the galectin superfamily. J Biol Chem 2001;276:20252–20260.
  • Takenaka Y, Fukumori T, Yoshii T, Nuclear export of phosphorylated galectin-3 regulates its antiapoptotic activity in response to chemotherapeutic drugs. Mol Cell Biol 2004;24:4395–4406.
  • Kuwabara I, Sano H, Liu FT. Functions of galectins in cell adhesion and chemotaxis. Methods Enzymol 2003;363:532–552.
  • He J, Baum LG. Galectin interactions with extracellular matrix and effects on cellular function. Methods Enzymol 2006;417:247–256.
  • Fred Brewer C. Binding and cross-linking properties of galectins. Biochim Biophys Acta 2002;19:2–3.
  • Bornstein P, Sage EH. Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol 2002;14:608–616.
  • Ochieng J, Leite-Browning ML, Warfield P. Regulation of cellular adhesion to extracellular matrix proteins by galectin-3. Biochem Biophys Res Commun 1998;246:788–791.
  • Glinsky VV, Glinsky GV, Glinskii OV, Intravascular metastatic cancer cell homotypic aggregation at the sites of primary attachment to the endothelium. Cancer Res 2003;63:3805–3811.
  • Chauhan D, Li G, Podar K, The bortezomib/proteasome inhibitor PS-341 and triterpenoid CDDO-Im induce synergistic anti-multiple myeloma (MM) activity and overcome bortezomib resistance. Blood 2004;103:3158–3166.
  • Pharoah PD. The potential for risk stratification in the management of ovarian cancer risk. Int J Gynecol Cancer 2012;22:S16–S17.
  • Abe M. Targeting the interplay between myeloma cells and the bone marrow microenvironment in myeloma. Int J Hematol 2011;94:334–343.
  • Anderson KC. New insights into therapeutic targets in myeloma. Hematol Am Soc Hematol Educ Program 2011;184–190.
  • Katz BZ. Adhesion molecules–The lifelines of multiple myeloma cells. Semin Cancer Biol 2010;20:186–195.
  • Mahindra A, Hideshima T, Anderson KC. Multiple myeloma: biology of the disease. Blood Rev 2010;24:S5–S11.
  • Shih Ie M, Ho CM, Nakayama K, Salani R. Pathogenesis and new therapeutic targets of ovarian cancer. J Oncol 2012;867512:30.
  • Cook G, Dumbar M, Franklin IM. The role of adhesion molecules in multiple myeloma. Acta Haematol 1997;97:81–89.
  • Damiano JS. Integrins as novel drug targets for overcoming innate drug resistance. Curr Cancer Drug Targets 2002;2:37–43.
  • Damiano JS, Dalton WS. Integrin-mediated drug resistance in multiple myeloma. Leuk Lymphoma 2000;38:71–81.
  • Sanz-Rodriguez F, Teixido J. VLA-4-dependent myeloma cell adhesion. Leuk Lymphoma 2001;41:239–245.
  • Parmo-Cabanas M, Bartolome RA, Wright N, Integrin alpha4beta1 involvement in stromal cell-derived factor-1alpha-promoted myeloma cell transendothelial migration and adhesion: role of cAMP and the actin cytoskeleton in adhesion. Exp Cell Res 2004;294:571–580.
  • Damiano JS, Cress AE, Hazlehurst LA, Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 1999;93:1658–1667.
  • Ria R, Vacca A, Ribatti D, Alpha(v)beta(3) integrin engagement enhances cell invasiveness in human multiple myeloma. Haematologica 2002;87:836–845.
  • Neri P, Ren L, Azab AK, Integrin beta7-mediated regulation of multiple myeloma cell adhesion, migration, and invasion. Blood 2011;117:6202–6213.
  • Casey RC, Burleson KM, Skubitz KM, Beta 1-integrins regulate the formation and adhesion of ovarian carcinoma multicellular spheroids. Am J Pathol 2001;159:2071–2080.
  • Strobel T, Cannistra SA. Beta1-integrins partly mediate binding of ovarian cancer cells to peritoneal mesothelium in vitro. Gynecol Oncol 1999;73:362–367.
  • Bell-McGuinn KM, Matthews CM, Ho SN, A phase II, single-arm study of the anti-alpha5beta1 integrin antibody volociximab as monotherapy in patients with platinum-resistant advanced epithelial ovarian or primary peritoneal cancer. Gynecol Oncol 2011;121:273–279.
  • Landen CN, Kim TJ, Lin YG, Tumor-selective response to antibody-mediated targeting of alphavbeta3 integrin in ovarian cancer. Neoplasia 2008;10:1259–1267.
  • Dijkgraaf I, Kruijtzer JA, Frielink C, Alpha v beta 3 integrin-targeting of intraperitoneally growing tumors with a radiolabeled RGD peptide. Int J Cancer 2007;120:605–610.
  • Dimopoulos MA, Terpos E. Multiple myeloma. Ann Oncol 2010;21:vii143–vii150.
  • Podar K, Chauhan D, Anderson KC. Bone marrow microenvironment and the identification of new targets for myeloma therapy. Leukemia 2009;23:10–24.
  • Schey S, Ramasamy K. Pomalidomide therapy for myeloma. Expert Opin Investig Drugs 2011;20:691–700.
  • Mirandola L, Yu Y, Chui K, Galectin-3C inhibits tumor growth and increases the anticancer activity of bortezomib in a murine model of human multiple myeloma. PLoS One 2011;6:13.
  • John CM, Leffler H, Kahl-Knutsson B, Truncated galectin-3 inhibits tumor growth and metastasis in orthotopic nude mouse model of human breast cancer. Clin Cancer Res 2003;9:2374–2383.
  • Cheng YL, Huang WC, Chen CL, Increased galectin-3 facilitates leukemia cell survival from apoptotic stimuli. Biochem Biophys Res Commun 2011;412:334–340.
  • Wongkham S, Junking M, Wongkham C, Suppression of galectin-3 expression enhances apoptosis and chemosensitivity in liver fluke-associated cholangiocarcinoma. Cancer Sci 2009;100:2077–2084.
  • Kim MK, Sung CO, Do IG, Overexpression of Galectin-3 and its clinical significance in ovarian carcinoma. Int J Clin Oncol 2011;16:352–358.
  • Earl LA, Bi S, Baum LG. Galectin multimerization and lattice formation are regulated by linker region structure. Glycobiology 2011;21:6–12.
  • Seetharaman J, Kanigsberg A, Slaaby R, X-ray crystal structure of the human galectin-3 carbohydrate recognition domain at 2.1-A resolution. J Biol Chem 1998;273:13047–13052.
  • Markowska AI, Liu FT, Panjwani N. Galectin-3 is an important mediator of VEGF- and bFGF-mediated angiogenic response. J Exp Med 2010;207:1981–1993.
  • Wan SY, Zhang TF, Ding Y. Galectin-3 enhances proliferation and angiogenesis of endothelial cells differentiated from bone marrow mesenchymal stem cells. Transplant Proc 2011;43:3933–3938.
  • Streetly MJ, Maharaj L, Joel S, GCS-100, a novel galectin-3 antagonist, modulates MCL-1, NOXA, and cell cycle to induce myeloma cell death. Blood 2010;115:3939–3948.
  • Fong YC, Liu SC, Huang CY, Osteopontin increases lung cancer cells migration via activation of the alphavbeta3 integrin/FAK/Akt and NF-kappaB-dependent pathway. Lung Cancer 2009;64:263–270.
  • Hideshima T, Ikeda H, Chauhan D, Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells. Blood 2009;114:1046–1052.
  • Antonov AS, Antonova GN, Munn DH, alphaVbeta3 integrin regulates macrophage inflammatory responses via PI3 kinase/Akt-dependent NF-kappaB activation. J Cell Physiol 2011;226:469–476.
  • Ju JH, Jang K, Lee KM, CD24 enhances DNA damage-induced apoptosis by modulating NF-kappaB signaling in CD44-expressing breast cancer cells. Carcinogenesis 2011;32:1474–1483.
  • Yasuda T. Activation of Akt leading to NF-kappaB up-regulation in chondrocytes stimulated with fibronectin fragment. Biomed Res 2011;32:209–215.
  • Noble PW, McKee CM, Cowman M, Shin HS. Hyaluronan fragments activate an NF-kappa B/I-kappa B alpha autoregulatory loop in murine macrophages. J Exp Med 1996;183:2373–2378.
  • Zhao Q, Guo X, Nash GB, Circulating galectin-3 promotes metastasis by modifying MUC1 localization on cancer cell surface. Cancer Res 2009;69:6799–6806.
  • Guo RX, Qiao YH, Zhou Y, Increased staining for phosphorylated AKT and nuclear factor-kappaB p65 and their relationship with prognosis in epithelial ovarian cancer. Pathol Int 2008;58:749–756.
  • Mabuchi S, Ohmichi M, Nishio Y, Inhibition of inhibitor of nuclear factor-kappaB phosphorylation increases the efficacy of paclitaxel in vitro and in vivo ovarian cancer models. Clin Cancer Res 2004;10:7645–7654.
  • Liu GH, Wang SR, Wang B, Kong BH. Inhibition of nuclear factor-kappaB by an antioxidant enhances paclitaxel sensitivity in ovarian carcinoma cell line. Int J Gynecol Cancer 2006;16:1777–1782.
  • Gu M, Wang W, Song WK, Selective modulation of the interaction of alpha 7 beta 1 integrin with fibronectin and laminin by L-14 lectin during skeletal muscle differentiation. J Cell Sci 1994;107:175–181.
  • Shen Y, Shen R, Ge L, Fibrillar type I collagen matrices enhance metastasis/invasion of ovarian epithelial cancer via beta1 integrin and PTEN signals. Int J Gynecol Cancer 2012;22:1316–1324.
  • Orlowski RZ, Stinchcombe TE, Mitchell BS, Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol 2002;20:4420–4427.
  • Richardson PG, Sonneveld P, Schuster MW, Safety and efficacy of bortezomib in high-risk and elderly patients with relapsed multiple myeloma. Br J Haematol 2007;137:429–435.
  • Medinger M, Mross K. Clinical trials with anti-angiogenic agents in hematological malignancies. J Angiogenes Res 2010;2:10.
  • Kiziltepe T, Anderson KC, Kutok JL, JS-K has potent anti-angiogenic activity in vitro and inhibits tumour angiogenesis in a multiple myeloma model in vivo. J Pharm Pharmacol 2010;62:145–151.
  • Anargyrou K, Dimopoulos MA, Sezer O, Terpos E. Novel anti-myeloma agents and angiogenesis. Leuk Lymphoma 2008;49:677–689.
  • Swelam WM, Al Tamimi DM. Biological impact of vascular endothelial growth factor on vessel density and survival in multiple myeloma and plasmacytoma. Pathol Res Pract 2010;206:753–759.
  • Giatromanolaki A, Bai M, Margaritis D, Hypoxia and activated VEGF/receptor pathway in multiple myeloma. Anticancer Res 2010;30:2831–2836.
  • Vacca A, Di Loreto M, Ribatti D, Bone marrow of patients with active multiple myeloma: angiogenesis and plasma cell adhesion molecules LFA-1, VLA-4, LAM-1, and CD44. Am J Hematol 1995;50:9–14.
  • Rana C, Sharma S, Agrawal V, Singh U. Bone marrow angiogenesis in multiple myeloma and its correlation with clinicopathological factors. Ann Hematol 2010;89:789–794.
  • Rajkumar SV, Leong T, Roche PC, Prognostic value of bone marrow angiogenesis in multiple myeloma. Clin Cancer Res 2000;6:3111–3116.
  • Eliceiri BP, Cheresh DA. Role of alpha v integrins during angiogenesis. Cancer J 2000;6:S245–S249.
  • Perkins ND, Gilmore TD. Good cop, bad cop: the different faces of NF-[kappa]B. Cell Death Differ 2006;13:759–772.
  • Morel J, Berenbaum F. Signal transduction pathways: new targets for treating rheumatoid arthritis. Joint Bone Spine 2004;71:503–510.
  • Jeon S-B, Yoon HJ, Chang CY, Galectin-3 exerts cytokine-like regulatory actions through the JAK–STAT pathway. J Immunol 2010;185:7037–7046.
  • Schmidmaier R, Mandl-Weber S, Gaul L, Inhibition of lymphocyte function associated antigen 1 by LFA878 induces apoptosis in multiple myeloma cells and is associated with downregulation of the focal adhesion kinase/phosphatidylinositol 3 kinase/Akt pathway. Int J Oncol 2007;31:969–976.
  • Segarra M, Lozano E, Corbera-Bellalta M, Thalidomide decreases gelatinase production by malignant B lymphoid cell lines through disruption of multiple integrin-mediated signaling pathways. Haematologica 2010;95:456–463.
  • Mirandola L, Yu Y, Chui K, Galectin-3C inhibits tumor growth and increases the anticancer activity of bortezomib in a murine model of human multiple myeloma. PLoS ONE 2011;6:e21811.
  • Musrap N, Diamandis EP. Revisiting the complexity of the ovarian cancer microenvironment–clinical implications for treatment strategies. Mol Cancer Res 2012;10:1254–1264.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.