804
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Murine and Human Model Systems for the Study of Dendritic Cell Immunobiology

Pages 85-115 | Accepted 20 Jul 2014, Published online: 09 Sep 2014

REFERENCES

  • Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 1973;137:1142–1162.
  • Palucka K, Banchereau J. How dendritic cells and microbes interact to elicit or subvert protective immune responses. Curr Opin Immunol 2002;14:420–431.
  • Manicassamy S, Pulendran B. Dendritic cell control of tolerogenic responses. Immunol Rev 2011;241:206–227.
  • Ganguly D, Haak S, Sisirak V, Reizis B. The role of dendritic cells in autoimmunity. Nat Rev Immunol 2013;13:566–577.
  • Solari MG, Thomson AW. Human dendritic cells and transplant outcome. Transplantation 2008;85:1513–1522.
  • Hargadon KM. Tumor-altered dendritic cell function: implications for anti-tumor immunity. Front Immunol 2013;4:192.
  • Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998;392:245–252.
  • Paglia P, Girolomoni G, Robbiati F, et al. Immortalized dendritic cell line fully competent in antigen presentation initiates primary T cell responses in vivo. J Exp Med 1993;178:1893–1901.
  • Granucci F, Girolomoni G, Lutz MB, et al. Modulation of cytokine expression in mouse dendritic cell clones. Eur J Immunol 1994;24:2522–2526.
  • Girolomoni G, Lutz MB, Pastore S, et al. Establishment of a cell line with features of early dendritic cell precursors from fetal mouse skin. Eur J Immunol 1995;25:2163–2169.
  • Shen Z, Reznikoff G, Dranoff G, Rock KL. Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules. J Immunol 1997;158:2723–2730.
  • Brown M, Zhang Y, Dermine S, et al. Dendritic cells infected with recombinant fowlpox virus vectors are potent and long-acting stimulators of transgene-specific class I restricted T lymphocyte activity. Gene Ther 2000;7:1680–1689.
  • He T, Tang C, Xu S, et al. Interferon gamma stimulates cellular maturation of dendritic cell line DC2.4 leading to induction of efficient cytotoxic T cell responses and antitumor immunity. Cell Mol Immunol 2007;4:105–111.
  • Rhule A, Rase B, Smith JR, Shepherd DM. Toll-like receptor ligand-induced activation of murine DC2.4 cells is attenuated by Panax notoginseng. J Ethnopharmacol 2008;116:179–186.
  • Imai J, Hasegawa H, Maruya M, et al. Exogenous antigens are processed through the endoplasmic reticulum-associated degradation (ERAD) in cross-presentation by dendritic cells. Int Immunol 2005;17:45–53.
  • Hargadon KM, Forrest OA, Reddy PR. Suppression of the maturation and activation of the dendritic cell line DC2.4 by melanoma-derived factors. Cell Immunol 2012;272:275–282.
  • Okada N, Tsujino M, Hagiwara Y, et al. Administration route-dependent vaccine efficiency of murine dendritic cells pulsed with antigens. Br J Cancer 2001;84:1564–1570.
  • Feng H, Zhang D, Palliser D, et al. Listeria-infected myeloid dendritic cells produce IFN-beta, priming T cell activation. J Immunol 2005;175:421–432.
  • Yount JS, Kraus TA, Horvath CM, et al. A novel role for viral-defective interfering particles in enhancing dendritic cell maturation. J Immunol 2006;177:4503–4513.
  • Aline F, Bout D. Dendritic cells as effector cells: gamma interferon activation of murine dendritic cells triggers oxygen-dependent inhibition of toxoplasma gondii replication. Infect Immun 2002;70:2368–2374.
  • Volkmann A, Neefjes J, Stockinger B. A conditionally immortalized dendritic cell line which differentiates in contact with T cells or T cell-derived cytokines. Eur J Immunol 1996;26:2565–2572.
  • Ebihara S, Endo S, Ito K, et al. Immortalized dendritic cell line with efficient cross-priming ability established from transgenic mice harboring the temperature-sensitive SV40 large T-antigen gene. J Biochem 2004;136:321–328.
  • Tascon RE, Soares CS, Ragno S, et al. Mycobacterium tuberculosis-activated dendritic cells induce protective immunity in mice. Immunology 2000;99:473–480.
  • Ruiz S, Beauvillain C, Mévélec M-N, et al. A novel CD4–CD8alpha+CD205+CD11b- murine spleen dendritic cell line: establishment, characterization and functional analysis in a model of vaccination to toxoplasmosis. Cell Microbiol 2005;7:1659–1571.
  • Applequist SE, Wallin RP a, Ljunggren H-G. Variable expression of Toll-like receptor in murine innate and adaptive immune cell lines. Int Immunol 2002;14:1065–1074.
  • Winzler C, Rovere P, Rescigno M, et al. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J Exp Med 1997;185:317–328.
  • Rodriguez A, Regnault A, Kleijmeer M, et al. Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells. Nat Cell Biol 1999;1:362–368.
  • Guermonprez P, Saveanu L, Kleijmeer M, et al. ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature 2003;425:397–402.
  • Schuurhuis DH, Laban S, Toes RE, et al. Immature dendritic cells acquire CD8(+) cytotoxic T lymphocyte priming capacity upon activation by T helper cell-independent or -dependent stimuli. J Exp Med 2000;192:145–150.
  • Fernandez NC, Lozier A, Flament C, et al. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 1999;5:405–411.
  • Théry C, Regnault A, Garin J, et al. Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J Cell Biol 1999;147:599–610.
  • Dumortier H, van Mierlo GJD, Egan D, et al. Antigen presentation by an immature myeloid dendritic cell line does not cause CTL deletion in vivo, but generates CD8+ central memory-like T cells that can be rescued for full effector function. J Immunol 2005;175:855–863.
  • MacKay VL, Moore EE. Immortalized dendritic cells, US Patent 5,648,219, 1997.
  • Mostoller K, Norbury CC, Jain P, Wigdahl B. Human T-cell leukemia virus type I Tax induces the expression of dendritic cell markers associated with maturation and activation. J Neurovirol 2004;10:358–371.
  • Hargadon KM, Ararso YT, Forrest OA, Harte CM. Melanoma-associated suppression of the dendritic cell lines DC2.4 and JAWSII. Am J Immunol 2012;8:179–190.
  • Jiang X, Shen C, Rey-Ladino J, et al. Characterization of murine dendritic cell line JAWS II and primary bone marrow-derived dendritic cells in Chlamydia muridarum antigen presentation and induction of protective immunity. Infect Immun 2008;76:2392–2401.
  • Otsu S, Gotoh K, Yamashiro T, et al. Transfer of antigen-pulsed dendritic cells induces specific T-cell proliferation and a therapeutic effect against long-term helicobacter pylori infection in mice. Infect Immun 2006;74:984–993.
  • Brossart P, Goldrath a W, Butz E a, et al. Virus-mediated delivery of antigenic epitopes into dendritic cells as a means to induce CTL. J Immunol 1997;158:3270–3276.
  • Pajtasz-Piasecka E, Rossowska J, Szyda A, et al. Generation of anti-tumor response by JAWS II mouse dendritic cells transduced with murine interleukin 12 genes. Oncol Rep 2007;17:1249–1257.
  • Bros M, Jährling F, Renzing A, et al. A newly established murine immature dendritic cell line can be differentiated into a mature state, but exerts tolerogenic function upon maturation in the presence of glucocorticoid. Blood 2007;109:3820–3829.
  • Elbe A, Schleischitz S, Strunk D, Sting G. Fetal skin-derived MHC class I+, MHC class II- dendritic cells stimulate MHC class I-restricted responses of unprimed CD8+ T cells. J Immuno. 1994;153:2878–2889.
  • Xu S, Ariizumi K, Caceres-Dittmar G, et al. Successive generation of antigen-presenting, dendritic cell lines from murine epidermis. J Immunol 1995;154:2697–2705.
  • Ariizumi K, Shen GL, Shikano S, et al. Identification of a novel, dendritic cell-associated molecule, dectin-1, by subtractive cDNA cloning. J Biol Chem 2000;275:20157–20167.
  • Shikano S, Bonkobara M, Zukas PK, et al. Molecular cloning of a dendritic cell-associated transmembrane protein, DC-HIL, that promotes RGD-dependent adhesion of endothelial cells through recognition of heparan sulfate proteoglycans. J Biol Chem 2001;276:8125–8134.
  • Mizumoto N, Hui F, Edelbaum D, et al. Differential activation profiles of multiple transcription factors during dendritic cell maturation. J Invest Dermatol 2005;124:718–724.
  • Kammertoens T, Willebrand R, Erdmann B, et al. CY15, a malignant histiocytic tumor that is phenotypically similar to immature dendritic cells CY15, a malignant histiocytic tumor that is phenotypically similar to immature dendritic cells. Cancer Res 2005;65:2560–2564.
  • Fuertes Marraco S a, Grosjean F, Duval A, et al. Novel murine dendritic cell lines: a powerful auxiliary tool for dendritic cell research. Front Immunol 2012;3:331.
  • Rasko JE, Metcalf D, Alexander B, et al. Establishment of multipotential and antigen presenting cell lines derived from myeloid leukemias in GM-CSF transgenic mice. Leukemia 1997;11:732–742.
  • Cao X, Zhao Y, Yu Y, et al. Granulocyte-macrophage colony-stimulating factor induces the differentiation of murine erythroleukaemia cells into dendritic cells. Immunology 1998;95:141–147.
  • Schroeder T, Lange C, Strehl J, Just U. Generation of functionally mature dendritic cells from the multipotential stem cell line FDCP-mix. Br J Haematol 2000;111:890–897.
  • Rathinam C, Sauer M, Ghosh A, et al. Generation and characterization of a novel hematopoietic progenitor cell line with DC differentiation potential. Leukemia 2006;20:870–876.
  • Nunez R, Sanchez M, Wild P, et al. Characterisation of two human dendritic cell-lines that express CD1a, take-up, process and present soluble antigens and induce MLR. Immunol Lett 1998;61:33–43.
  • Khaiboullina SF, Morzunov SP, Hall MR, et al. Human dendritic cells transfected with a human papilloma virus-18 construct display decreased mobility and upregulated cytokine production. Int J Oncol 2013;43:1701–1709.
  • Berges C, Naujokat C, Tinapp S, et al. A cell line model for the differentiation of human dendritic cells. Biochem Biophys Res Commun 2005;333:896–907.
  • Santegoets SJ a M, van den Eertwegh AJM, van de Loosdrecht A, et al. Human dendritic cell line models for DC differentiation and clinical DC vaccination studies. J Leukoc Biol 2008;84:1364–1373.
  • Chan WK, Cheung CCH, Law HKW, et al. Ganoderma lucidum polysaccharides can induce human monocytic leukemia cells into dendritic cells with immuno-stimulatory function. J Hematol Oncol. 2008;1:9.
  • Teobald I, Dunnion DJ, Whitbread M, et al. Phenotypic and functional differentiation of KG-1 into dendritic-like cells. Immunobiology 2008;213:75–86.
  • Horlock C, Shakib F, Mahdavi J, et al. Analysis of proteomic profiles and functional properties of human peripheral blood myeloid dendritic cells, monocyte-derived dendritic cells and the dendritic cell-like KG-1 cells reveals distinct characteristics. Genome Biol 2007;8:R30.
  • Yoshida Y, Sakaguchi H, Ito Y, et al. Evaluation of the skin sensitization potential of chemicals using expression of co-stimulatory molecules, CD54 and CD86, on the naive THP-1 cell line. Toxicol In Vitro [Internet]. 2003;17(2):221–8. Available from: http://www.ncbi.nlm.nih.gov/ pubmed/12650676
  • Bocchietto E, Paolucci C, Breda D, et al. Human monocytoid THP-1 cell line versus monocyte-derived human immature dendritic cells as in vitro models for predicting the sensitising potential of chemicals. Int J Immunopathol Pharmacol 2007;20:259–265.
  • Koski GK, Schwartz GN, Weng DE, et al. Calcium ionophore-treated myeloid cells acquire many dendritic cell characteristics independent of prior differentiation state, transformation status, or sensitivity to biologic agents. Blood 1999;94:1359–1371.
  • Hu ZB, Ma W, Zaborski M, et al. Establishment and characterization of two novel cytokine-responsive acute myeloid and monocytic leukemia cell lines, MUTZ-2 and MUTZ-3. Leukemia 1996;10:1025–1040.
  • Santegoets SJAM, Masterson AJ, van der Sluis PC, et al. A CD34(+) human cell line model of myeloid dendritic cell differentiation: evidence for a CD14(+)CD11b(+) Langerhans cell precursor. J Leukoc Biol 2006;80:1337–1344.
  • Kim KD, Choi S-C, Noh Y-W, et al. Impaired responses of leukemic dendritic cells derived from a human myeloid cell line to LPS stimulation. Exp Mol Med 2006;38:72–84.
  • Santegoets SJAM, Schreurs MWJ, Masterson AJ, et al. In vitro priming of tumor-specific cytotoxic T lymphocytes using allogeneic dendritic cells derived from the human MUTZ-3 cell line. Cancer Immunol Immunother 2006;55:1480–1490.
  • Santegoets SJAM, Bontkes HJ, Stam AGM, et al. Inducing antitumor T cell immunity: comparative functional analysis of interstitial versus Langerhans dendritic cells in a human cell line model. J Immunol 2008;180:4540–4549.
  • Huch JH, Cunningham AL, Arvin AM, et al. Impact of varicella-zoster virus on dendritic cell subsets in human skin during natural infection. J Virol 2010;84:4060–4072.
  • Larsson K, Lindstedt M, Borrebaeck CAK. Functional and transcriptional profiling of MUTZ-3, a myeloid cell line acting as a model for dendritic cells. Immunology 2006;117:156–166.
  • Rasaiyaah J, Noursadeghi M, Kellam P, Chain B. Transcriptional and functional defects of dendritic cells derived from the MUTZ-3 leukaemia line. Immunology 2009;127:429–441.
  • Lundberg K, Albrekt A-S, Nelissen I, et al. Transcriptional profiling of human dendritic cell populations and models–unique profiles of in vitro dendritic cells and implications on functionality and applicability. PLoS One 2013;8:e52875.
  • Haruta M, Tomita Y, Yuno A, et al. TAP-deficient human iPS cell-derived myeloid cell lines as unlimited cell source for dendritic cell-like antigen-presenting cells. Gene Ther 2013;20:504–513.
  • Inaba K, Steinman RM, Pack MW, et al. Identification of proliferating dendritic cell precursors in mouse blood. J Exp Med 1992;175:1157–1167.
  • Inaba K, Inaba M, Romani N, et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 1992;176:1693–1702.
  • Lutz MB, Kukutsch N, Ogilvie AL, et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods 1999;223:77–92.
  • Lu L, McCaslin D, Starzl TE, Thomson AW. Bone marrow-derived dendritic cell progenitors (NLDC 145+, MHC class II+, B7-1dim, B7-2−) induce alloantigen-specific hyporesponsiveness in murine T lymphocytes. Transplantation 1995;60(12):1539–1545.
  • Gopisetty A, Bhattacharya P, Haddad C, et al. OX40L/Jagged1 cosignaling by GM-CSF-induced bone marrow-derived dendritic cells is required for the expansion of functional regulatory T cells. J Immunol 2013;190:5516–5525.
  • Bhattacharya P, Gopisetty A, Ganesh BB, et al. GM-CSF-induced, bone-marrow-derived dendritic cells can expand natural Tregs and induce adaptive Tregs by different mechanisms. J Leukoc Biol. 2011;89:235–249.
  • Kelleher M, Beverley PC. Lipopolysaccharide modulation of dendritic cells is insufficient to mature dendritic cells to generate CTLs from naive polyclonal CD8+ T cells in vitro, whereas CD40 ligation is essential. J Immunol 2001;167:6247–6255.
  • Jonuleit H, Knop J, Enk AH. Cytokines and their effects on maturation, differentiation and migration of dendritic cells. Arch Dermatol Res 1996;289:1–8.
  • Yamaguchi Y. Developmental regulation by cytokines of bone marrow-derived dendritic cells and epidermal Langerhans cells. Microbiol Immunol 1998;42:639–650.
  • Sparwasser T, Koch ES, Vabulas RM, et al. Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur J Immunol 1998;28:2045–2054.
  • Jiang H-R, Muckersie E, Robertson M, et al. Secretion of interleukin-10 or interleukin-12 by LPS-activated dendritic cells is critically dependent on time of stimulus relative to initiation of purified DC culture. J Leukoc Biol 2002;72:978–985.
  • O'Keeffe M, Hochrein H, Vremec D, et al. Dendritic cell precursor populations of mouse blood: identification of the murine homologues of human blood plasmacytoid pre-DC2 and CD11c+ DC1 precursors. Blood 2003;101:1453–1459.
  • Brasel K, De Smedt T, Smith JL, Maliszewski CR. Generation of murine dendritic cells from flt3-ligand-supplemented bone marrow cultures. Blood 2000;96:3029–3039.
  • Naik SH, Proietto AI, Wilson NS, et al. Cutting edge: generation of splenic CD8+ and CD8- dendritic cell equivalents in Fms-like tyrosine kinase 3 ligand bone marrow cultures. J Immunol 2005;174:6592–6597.
  • Sathe P, Vremec D, Wu L, Corcoran L, Shortman K. Convergent differentiation: myeloid and lymphoid pathways to murine plasmacytoid dendritic cells. Blood 2013;121:11–19.
  • Brawand P, Fitzpatrick DR, Greenfield BW, et al. Murine plasmacytoid pre-dendritic cells generated from Flt3 ligand-supplemented bone marrow cultures are immature APCs. J Immunol 2002;169:6711–6719.
  • Xu Y, Zhan Y, Lew AM, et al. Differential development of murine dendritic cells by GM-CSF versus Flt3 ligand has implications for inflammation and trafficking. J Immunol 2007;179:7577–7584.
  • Weigel BJ, Nath N, Taylor PA, et al. Comparative analysis of murine marrow-derived dendritic cells generated by Flt3L or GM-CSF/IL-4 and matured with immune stimulatory agents on the in vivo induction of antileukemia responses. Blood 2002;100:4169–4176.
  • Li R, Zheng X, Popov I, et al. Gene silencing of IL-12 in dendritic cells inhibits autoimmune arthritis. J Transl Med 2012;10:19.
  • Heng Y, Ma Y, Yin H, et al. Adoptive transfer of FTY720-treated immature BMDCs significantly prolonged cardiac allograft survival. Transpl Int 2010;23:1259–1270.
  • Labeur MS, Roters B, Pers B, et al. Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage. J Immunol 1999;162:168–175.
  • Mullins DW, Sheasley SL, Ream RM, et al. Route of immunization with peptide-pulsed dendritic cells controls the distribution of memory and effector T cells in lymphoid tissues and determines the pattern of regional tumor control. J Exp Med 2003;198:1023–1034.
  • Santiago-Schwarz F, Belilos E, Diamond B, Carsons SE. TNF in combination with GM-CSF enhances the differentiation of neonatal cord blood stem cells into dendritic cells and macrophages. J Leukoc Biol 1992;52:274–281.
  • Caux C, Dezutter-Dambuyant C, Schmitt D, Banchereau J. GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature 1992;360:258–261.
  • Romani N, Gruner S, Brang D, et al. Proliferating dendritic cell progenitors in human blood. J Exp Med 1994;180:83–93.
  • Caux C. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha. J Exp Med 1996;184: 695–706.
  • Mackensen A, Herbst B, Köhler G, et al. Delineation of the dendritic cell lineage by generating large numbers of Birbeck granule-positive Langerhans cells from human peripheral blood progenitor cells in vitro. Blood 1995;86:2699–2707.
  • Herbst B, Köhler G, Mackensen A, et al. In vitro differentiation of CD34 +hematopoietic progenitor cells toward distinct dendritic cell subsets of the birbeck granule and MIIC-positive Langerhans cell and the interdigitating dendritic cell type. Blood 1996;88:2541–2548.
  • Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 1994;179:1109–1118.
  • Miwa S, Nishida H, Tanzawa Y, et al. TNF-α and tumor lysate promote the maturation of dendritic cells for immunotherapy for advanced malignant bone and soft tissue tumors. PLoS One 2012;7:e52926.
  • Andrieu JM, Lu W. A dendritic cell-based vaccine for treating HIV infection: background and preliminary results. J Intern Med 2007;261:123–131.
  • Escobar A, López M, Serrano A, et al. Dendritic cell immunizations alone or combined with low doses of interleukin-2 induce specific immune responses in melanoma patients. Clin Exp Immunol 2005;142:555–568.
  • Giannoukakis N, Phillips B, Finegold D, et al. Phase I (safety) study of autologous tolerogenic dendritic cells in type 1 diabetic patients. Diabetes Care 2011;34:2026–2032.
  • Moreau A, Varey E, Bouchet-Delbos L, et al. Cell therapy using tolerogenic dendritic cells in transplantation. Transplant Res 2012;1:13.
  • Szabolcs P, Feller ED, Moore MA, Young JW. Progenitor recruitment and in vitro expansion of immunostimulatory dendritic cells from human CD34+ bone marrow cells by c-kit-ligand, GM-CSF, and TNF alpha. Adv Exp Med Biol 1995;378:17–20.
  • Szabolcs P, Moore MA, Young JW. Expansion of immunostimulatory dendritic cells among the myeloid progeny of human CD34+ bone marrow precursors cultured with c-kit ligand, granulocyte-macrophage colony-stimulating factor, and TNF-alpha. J Immunol 1995;154:5851–5861.
  • Young JW, Szabolcs P, Moore MA. Identification of dendritic cell colony-forming units among normal human CD34+ bone marrow progenitors that are expanded by c-kit-ligand and yield pure dendritic cell colonies in the presence of granulocyte/macrophage colony-stimulating factor and tumor necrosis factor alpha. J Exp Med 1995;182:1111–1119.
  • Saraya K, Reid CD. Stem cell factor and the regulation of dendritic cell production from CD34+ progenitors in bone marrow and cord blood. Br J Haematol 1996;93:258–264.
  • Ye Z, Gee AP, Bowers WE, et al. In vitro expansion and characterization of dendritic cells derived from human bone marrow CD34+ cells. Bone Marrow Transplant 1996;18:997–1008.
  • Ratta M, Rondelli D, Fortuna A, et al. Generation and functional characterization of human dendritic cells derived from CD34 cells mobilized into peripheral blood: comparison with bone marrow CD34+ cells. Br J Haematol 1998;101:756–765.
  • Chen W, Antonenko S, Sederstrom JM, et al. Thrombopoietin cooperates with FLT3-ligand in the generation of plasmacytoid dendritic cell precursors from human hematopoietic progenitors. Blood 2004;103:2547–2553.
  • Encabo A, Solves P, Mateu E, et al. Selective generation of different dendritic cell precursors from CD34+ cells by interleukin-6 and interleukin-3. Stem Cells 2004;22:725–740.
  • Moseman EA, Liang X, Dawson AJ, et al. Human plasmacytoid dendritic cells activated by CpG oligodeoxynucleotides induce the generation of CD4+CD25+ regulatory T cells. J Immunol 2004;173:4433–4442.
  • Mucci I, Legitimo A, Compagnino M, et al. The methodological approach for the generation of human dendritic cells from monocytes affects the maturation state of the resultant dendritic cells. Biologicals 2009;37:288–296.
  • Delirezh N, Shojaeefar E, Parvin P, Asadi B. Comparison the effects of two monocyte isolation methods, plastic adherence and magnetic activated cell sorting methods, on phagocytic activity of generated dendritic cells. Cell J 2013;15:218–223.
  • ONeill HC, Wilson HL. Limitations with in vitro production of dendritic cells using cytokines. J Leukoc Biol 2004;75:600–603.
  • Chao D, Bahl P, Houlbrook S, et al. Human cultured dendritic cells show differential sensitivity to chemotherapy agents as assessed by the MTS assay. Br J Cancer 1999;81:1280–1284.
  • Pichowski JS, Cumberbatch M, Dearman RJ, et al. Allergen-induced changes in interleukin 1 beta (IL-1 beta) mRNA expression by human blood-derived dendritic cells: inter-individual differences and relevance for sensitization testing. J Appl Toxicol 2001;21:115–121.
  • Hanada K, Tsunoda R, Hamada H. GM-CSF-induced in vivo expansion of splenic dendritic cells and their strong costimulation activity. J Leukoc Biol 1996;60:181–190.
  • Bronte V, Chappell DB, Apolloni E, et al. Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. J Immunol 1999;162:5728–5737.
  • Daro E, Pulendran B, Brasel K, et al. Polyethylene glycol-modified GM-CSF expands CD11b(high)CD11c(high) but notCD11b(low)CD11c(high) murine dendritic cells in vivo: a comparative analysis with Flt3 ligand. J Immunol 2000;165:49–58.
  • Maraskovsky E, Brasel K, Teepe M, et al. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J Exp Med 1996;184:1953–1962.
  • Daro E, Butz E, Smith J, et al. Comparison of the functional properties of murine dendritic cells generated in vivo with Flt3 ligand, GM-CSF and Flt3 ligand plus GM-SCF. Cytokine 2002;17:119–130.
  • Parajuli P, Mosley RL, Pisarev V, et al. Flt3 ligand and granulocyte-macrophage colony-stimulating factor preferentially expand and stimulate different dendritic and T-cell subsets. Exp Hematol 2001;29:1185–1193.
  • Vasu C, Dogan R-NE, Holterman MJ, Prabhakar BS. Selective induction of dendritic cells using granulocyte macrophage-colony stimulating factor, but not fms-like tyrosine kinase receptor 3-ligand, activates thyroglobulin-specific CD4+/CD25 +T cells and suppresses experimental autoimmune thyroiditis. J Immunol 2003;170:5511–5522.
  • Gangi E, Vasu C, Cheatem D, Prabhakar BS. IL-10-producing CD4+CD25+ regulatory T cells play a critical role in granulocyte-macrophage colony-stimulating factor-induced suppression of experimental autoimmune thyroiditis. J Immunol 2005;174:7006–7013.
  • Ganesh BB, Cheatem DM, Sheng JR, et al. GM-CSF-induced CD11c+CD8a–dendritic cells facilitate Foxp3+ and IL-10+ regulatory T cell expansion resulting in suppression of autoimmune thyroiditis. Int Immunol 2009;21:269–282.
  • Burger JA, Baird SM, Powell HC, et al. Local and systemic effects after adenoviral transfer of the murine granulocyte-macrophage colony-stimulating factor gene into mice. Br J Haematol 2000;108:641–652.
  • Wang J, Snider DP, Hewlett BR, et al. Transgenic expression of granulocyte-macrophage colony-stimulating factor induces the differentiation and activation of a novel dendritic cell population in the lung. Blood 2000;95:2337–2345.
  • Solheim JC, Reber AJ, Ashour AE, et al. Spleen but not tumor infiltration by dendritic and T cells is increased by intravenous adenovirus-Flt3 ligand injection. Cancer Gene Ther 2007;14:364–371.
  • Peretz Y, Zhou ZF, Halwani F, Prud'homme GJ. In vivo generation of dendritic cells by intramuscular codelivery of FLT3 ligand and GM-CSF plasmids. Mol Ther 2002;6:407–414.
  • Liu F, Song Y, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 1999;6:1258–1266.
  • Zhang G, Budker V, Wolff JA. High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther 1999;10:1735–1737.
  • Lemoine JL, Farley R, Huang L. Mechanism of efficient transfection of the nasal airway epithelium by hypotonic shock. Gene Ther 2005;12:1275–1282.
  • Wang Y, Zheng N, Lu Z, et al. In vivo expansion of two distinct dendritic cells in mouse livers and its impact on liver immune regulation. Liver Transpl 2006;12:1850–1861.
  • Hao X, Kim TS, Braciale TJ. Differential response of respiratory dendritic cell subsets to influenza virus infection. J Virol 2008;82:4908–4919.
  • Hargadon KM, Zhou H, Albrecht RA, et al. Major histocompatibility complex class II expression and hemagglutinin subtype influence the infectivity of type A influenza virus for respiratory dendritic cells. J Virol 2011;85:11955–11963.
  • Shimao K, Takayama T, Enomoto K, et al. Cancer gene therapy using in vivo electroporation of Flt3-ligand. Int J Oncol 2005;27:457–463.
  • Fong CL, Mok C-L, Hui KM. Intramuscular immunization with plasmid coexpressing tumour antigen and Flt-3L results in potent tumour regression. Gene Ther 2006;13:245–256.
  • Xu J, Xu W, Chen X, et al. Recombinant DNA vaccine of the early secreted antigen ESAT-6 by Mycobacterium tuberculosis and Flt3 ligand enhanced the cell-mediated immunity in mice. Vaccine 2008;26:4519–4525.
  • Gupta R, Emens LA. GM-CSF-secreting vaccines for solid tumors: moving forward. Discov Med 2010;10:52–60.
  • Soiffer R, Lynch T, Mihm M, et al. Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc Natl Acad Sci USA 1998;95:13141–13146.
  • Luiten RM, Kueter EWM, Mooi W, et al. Immunogenicity, including vitiligo, and feasibility of vaccination with autologous GM-CSF-transduced tumor cells in metastatic melanoma patients. J Clin Oncol 2005;23:8978–8991.
  • Elias EG, Zapas JL, Beam SL, Brown SD. GM-CSF and IL-2 combination as adjuvant therapy in cutaneous melanoma: early results of a phase II clinical trial. Oncology 2005;19(4 Suppl 2):15–18.
  • Gunturu KS, Meehan KR, Mackenzie TA, et al. Cytokine working group study of lymphodepleting chemotherapy, interleukin-2, and granulocyte-macrophage colony-stimulating factor in patients with metastatic melanoma: clinical outcomes and peripheral-blood cell recovery. J Clin Oncol 2010;28:1196–1202.
  • Perales M-A, Yuan J, Powel S, et al. Phase I/II study of GM-CSF DNA as an adjuvant for a multipeptide cancer vaccine in patients with advanced melanoma. Mol Ther 2008;16:2022–2029.
  • Hofbauer GFL, Baur T, Bonnet M-C, et al. Clinical phase I intratumoral administration of two recombinant ALVAC canarypox viruses expressing human granulocyte-macrophage colony-stimulating factor or interleukin-2: the transgene determines the composition of the inflammatory infiltrate. Melanoma Res 2008;18:104–111.
  • Weber J, Sondak VK, Scotland R, et al. Granulocyte-macrophage-colony-stimulating factor added to a multipeptide vaccine for resected Stage II melanoma. Cancer 2003;97:186–200.
  • Slingluff CL, Petroni GR, Olson WC, et al. Effect of granulocyte/macrophage colony-stimulating factor on circulating CD8+ and CD4+ T-cell responses to a multipeptide melanoma vaccine: outcome of a multicenter randomized trial. Clin Cancer Res 2009;15:7036–7044.
  • Pulendran B, Banchereau J, Burkeholder S, et al. Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets In vivo. J Immunol 2000;165:566–572.
  • Maraskovsky E, Daro E, Roux E, et al. In vivo generation of human dendritic cell subsets by Flt3 ligand. Blood 2000;96:878–884.
  • Morse MA, Nair S, Fernandez-Casal M, et al. Preoperative mobilization of circulating dendritic cells by Flt3 ligand administration to patients with metastatic colon cancer. J Clin Oncol 2000;18:3883–3893.
  • Marroquin CE, Westwood JA, Lapointe R, et al. Mobilization of dendritic cell precursors in patients with cancer by flt3 ligand allows the generation of higher yields of cultured dendritic cells. J Immunother;25:278–288.
  • Mosca PJ, Hobeika AC, Colling K, et al. Multiple signals are required for maturation of human dendritic cells mobilized in vivo with Flt3 ligand. J Leukoc Biol 2002;72:546–553.
  • Jung S, Unutmaz D, Wong P, et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 2002;17:211–220.
  • Zaft T, Sapoznikov A, Krauthgamer R, et al. CD11chigh dendritic cell ablation impairs lymphopenia-driven proliferation of naive and memory CD8 +T cells. J Immunol 2005;175:6428–6435.
  • Hochweller K, Striegler J, Hämmerling GJ, Garbi N. A novel CD11c.DTR transgenic mouse for depletion of dendritic cells reveals their requirement for homeostatic proliferation of natural killer cells. Eur J Immunol 2008;38:2776–2783.
  • Landsman L, Varol C, Jung S. Distinct differentiation potential of blood monocyte subsets in the lung. J Immunol 2007;178:2000–2007.
  • Probst HC, Tschannen K, Odermatt B, et al. Histological analysis of CD11c-DTR/GFP mice after in vivo depletion of dendritic cells. Clin Exp Immunol 2005;141:398–404.
  • Huleatt JW, Lefrançois L. Antigen-driven induction of CD11c on intestinal intraepithelial lymphocytes and CD8+ T cells in vivo. J Immunol 1995;154:5684–5693.
  • Hebel K, Griewank K, Inamine A, et al. Plasma cell differentiation in T-independent type 2 immune responses is independent of CD11c(high) dendritic cells. Eur J Immunol 2006;36:2912–2919.
  • Meredith MM, Liu K, Darrasse-Jeze G, et al. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J Exp Med 2012;209: 1153–1165.
  • Satpathy AT, KC W, Albring JC, et al. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J Exp Med 2012;209:1135–1152.
  • Fukaya T, Murakami R, Takagi H, et al. Conditional ablation of CD205+ conventional dendritic cells impacts the regulation of T-cell immunity and homeostasis in vivo. Proc Natl Acad Sci USA 2012;109:11288–11293.
  • Bennett CL, van Rijn E, Jung S, et al. Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity. J Cell Biol 2005;169:569–576.
  • Kissenpfennig A, Henri S, Dubois B, et al. Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 2005;22:643–654.
  • Swiecki M, Gilfillan S, Vermi W, et al. Plasmacytoid dendritic cell ablation impacts early interferon responses and antiviral NK and CD8(+) T cell accrual. Immunity 2010;33:955–966.
  • Takagi H, Fukaya T, Eizumi K, et al. Plasmacytoid dendritic cells are crucial for the initiation of inflammation and T cell immunity in vivo. Immunity 2011;35:958–971.
  • Piva L, Tetlak P, Claser C, et al. Cutting edge: Clec9A+ dendritic cells mediate the development of experimental cerebral malaria. J Immunol 2012;189:1128–1132.
  • Kassim SH, Rajasagi NK, Ritz BW, et al. Dendritic cells are required for optimal activation of natural killer functions following primary infection with herpes simplex virus type 1. J Virol 2009;83:3175–3186.
  • Varol C, Vallon-Eberhard A, Elinav E, et al. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 2009;31:502–512.
  • Birnberg T, Bar-On L, Sapoznikov A, et al. Lack of conventional dendritic cells is compatible with normal development and T cell homeostasis, but causes myeloid proliferative syndrome. Immunity 2008;29:986–997.
  • Ohnmacht C, Pullner A, King SBS, et al. Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J Exp Med 2009;206:549–559.
  • Kaplan DH, Jenison MC, Saeland S, et al. Epidermal langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity 2005;23:611–620.
  • Zenke M, Hieronymus T. Towards an understanding of the transcription factor network of dendritic cell development. Trends Immunol 2006;27:140–145.
  • Cisse B, Caton ML, Lehner M, et al. Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell 2008;135:37–48.
  • Hildner K, Edelson BT, Purtha WE, et al. Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 2008;322:1097–1100.
  • Gottschalk C, Damuzzo V, Gotot J, et al. Batf3-dependent dendritic cells in the renal lymph node induce tolerance against circulating antigens. J Am Soc Nephrol 2013;24:543–549.
  • Arora P, Baena A, KOAYu, et al. A single subset of dendritic cells controls the cytokine bias of natural killer T cell responses to diverse glycolipid antigens. Immunity 2014;40:105–116.
  • Sosinowski T, White JT, Cross EW, et al. CD8α+ dendritic cell trans presentation of IL-15 to naive CD8+ T cells produces antigen-inexperienced T cells in the periphery with memory phenotype and function. J Immunol 2013;190:1936–1947.
  • Kurts C, Cannarile M, Klebba I, Brocker T. Cutting edge: dendritic cells are sufficient to cross-present self-antigens to CD8 T cells in vivo. J Immunol 2001;166:1439–1442.
  • Brocker T, Riedinger M, Karjalainen K. Targeted expression of major histocompatibility complex (MHC) class II molecules demonstrates that dendritic cells can induce negative but not positive selection of thymocytes in vivo. J Exp Med 1997;185:541–550.
  • Brocker T, Gulbranson-Judge A, Flynn S, et al. CD4 T cell traffic control: in vivo evidence that ligation of OX40 on CD4 T cells by OX40-ligand expressed on dendritic cells leads to the accumulation of CD4 T cells in B follicles. Eur J Immunol 1999;29:1610–1616.
  • Kerksiek KM, Niedergang F, Chavrier P, et al. Selective Rac1 inhibition in dendritic cells diminishes apoptotic cell uptake and cross-presentation in vivo. Blood 2005;105:742–749.
  • Luckashenak N, Schroeder S, Endt K, et al. Constitutive crosspresentation of tissue antigens by dendritic cells controls CD8+ T cell tolerance in vivo. Immunity 2008;28:521–532.
  • Laouar Y, Sutterwala FS, Gorelik L, Flavell RA. Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma. Nat Immunol 2005;6:600–607.
  • Laouar Y, Town T, Jeng D, et al. TGF-beta signaling in dendritic cells is a prerequisite for the control of autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2008;105:10865–10870.
  • Caton ML, Smith-Raska MR, Reizis B. Notch-RBP-J signaling controls the homeostasis of CD8- dendritic cells in the spleen. J Exp Med 2007;204:1653–1664.
  • Ramalingam R, Larmonier CB, Thurston RD, et al. Dendritic cell-specific disruption of TGF-β receptor II leads to altered regulatory T cell phenotype and spontaneous multiorgan autoimmunity. J Immunol 2012;189:3878–3893.
  • Travis MA, Reizis B, Melton AC, et al. Loss of integrin alpha(v)beta8 on dendritic cells causes autoimmunity and colitis in mice. Nature 2007;449:361–365.
  • Shortman K, Liu Y-J. Mouse and human dendritic cell subtypes. Nat Rev Immunol 2002;2:151–161.
  • Robbins SH, Walzer T, Dembélé D, et al. Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol 2008;9:R17.
  • Altenschmidt U, Ricciardi-Castagnoli P, Modolell M, et al. Bone marrow-derived macrophage lines and immortalized cloned macrophage and dendritic cells support priming of Borrelia burgdorferi—specific T cell responses in vitro and/or in vivo. Immunol Lett 1996;50:41–49.
  • Mann J, Oakley F, Johnson PWM, et al. CD40 induces interleukin-6 gene transcription in dendritic cells: regulation by TRAF2, AP-1, NF-kappa B, AND CBF1. J Biol Chem 2002;277:17125–17138.
  • Senba K, Matsumoto T, Yamada K, et al. Passive carriage of rabies virus by dendritic cells. Springerplus 2013;2:419.
  • Timares L, Takashima A, Johnston SA. Quantitative analysis of the immunopotency of genetically transfected dendritic cells. Proc Natl Acad Sci USA 1998;95:13147–13152.
  • Mohan J, Hopkins J, Mabbott NA. Skin-derived dendritic cells acquire and degrade the scrapie agent following in vitro exposure. Immunology 2005;116:122–133.
  • Elbe-Bürger A, Mommaas AM, Prieschl EE, et al. Major histocompatibility complex class II- fetal skin dendritic cells are potent accessory cells of polyclonal T-cell responses. Immunology 2000;101:242–253.
  • Simona Riva, Maria Luisa Nolli, Manfred B. Lutz, stefania citterio, giampiero girolomini, claudia winzler and PR-C. Bacteria and bacterial cell wall constituents induce the production of regulatory cytokines in dendritic cell clones. J Inflamm 1996;46:98–105.
  • Eloranta M-L, Sandberg K, Ricciardi-Castagnoli P, et al. Production of interferon-alpha/beta by murine dendritic cell lines stimulated by virus and bacteria. Scand J Immunol 1997;46:235–241.
  • Matos TJ, Jaleco SP, Gonçalo M, et al. Release of IL-1beta via IL-1beta-converting enzyme in a skin dendritic cell line exposed to 2,4-dinitrofluorobenzene. Mediators Inflamm 2005;2005:131–138.
  • Tascon RE, Ragno S, Lowrie DB, Colston MJ. Immunostimulatory bacterial DNA sequences activate dendritic cells and promote priming and differentiation of CD8+ T cells. Immunology 2000;99:1–7.
  • Kalupahana RS, Mastroeni P, Maskell D, Blacklaws BA. Activation of murine dendritic cells and macrophages induced by Salmonella enterica serovar Typhimurium. Immunology 2005;115:462–472.
  • Rescigno M, Citterio S, Thery C, et al. Bacteria-induced neo-biosynthesis, stabilization, and surface expression of functional class I molecules in mouse dendritic cells. Proc Natl Acad Sci U S A 1998;95:5229–5234.
  • Lupo P, Chang YC, Kelsall BL, et al. The presence of capsule in Cryptococcus neoformans influences the gene expression profile in dendritic cells during interaction with the fungus. Infect Immun 2008;76:1581–1589.
  • Takashima A, Xu S, Ariizumi K, Bergstresser PR. Establishment and characterization of antigen-presenting cell lines (XS series) derived from newborn mouse epidermis. Adv Exp Med Biol 1995;378:159–162.
  • Thatcher TH, Luzina I, Fishelevich R, et al. Topical imiquimod treatment prevents UV-light induced loss of contact hypersensitivity and immune tolerance. J Invest Dermatol 2006;126:821–831.
  • Ohtani M, Iyori M, Saeki A, et al. Involvement of suppressor of cytokine signalling-1-mediated degradation of MyD88-adaptor-like protein in the suppression of Toll-like receptor 2-mediated signalling by the murine C-type lectin SIGNR1-mediated signalling. Cell Microbiol 2012;14:40–57.
  • Kodali S, Ding W, Huang J, et al. Vasoactive intestinal peptide modulates Langerhans cell immune function. J Immunol 2004;173:6082–6088.
  • Preischl EE, Pendl GG, Elbe A, et al. Induction of the TNF-alpha promoter in the murine dendritic cell line 18 and the murine mast cell line CPII is differently regulated. J Immunol 1996;157:2645–2653.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.