531
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Unraveling the Link Between Ectodermal Disorders and Primary Immunodeficiencies

, , , , , & show all
Pages 25-38 | Accepted 19 Jan 2015, Published online: 16 Mar 2015

REFERENCES

  • Wright JT, Grange DK, Richter MK. Hypohidrotic ectodermal dysplasia. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. Seattle (WA): University of Washington, Seattle: Gene Reviews R; 2003.
  • Chassaing N, Cluzeau C, Bal E, et al. Mutations in EDARADD account for a small proportion of hypohidrotic ectodermal dysplasia cases. Br J Dermatol 2010;162:1044–1048.
  • Cluzeau C, Hadj-Rabia S, Jambou M, et al. Only four genes (EDA1, EDAR, EDARADD, and WNT10A) account for 90% of hypohidrotic/anhidrotic ectodermal dysplasia cases. Hum Mutat 2011;32:70–72.
  • Cui CY, Schlessinger D. EDA signaling and skin appendage development. Cell Cycle 2006;5:2477–2483.
  • Mikkola ML. Molecular aspects of hypohidrotic ectodermal dysplasia. Am J Med Genet 2009;149:2031–2036.
  • Perkins ND. Integrating cell-signalling pathways with NF-kB and IKK function. Nat Rev Mol Cell Biol 2007;8:49–62.
  • Itin PH, Fistarol SK. Ectodermal dysplasias. Am J Med Genet 2004;131C:45–51.
  • Pinheiro M, Freiremaia N. Ectodermal dysplasias –a clinical classification and a causal review. Am J Med Genet 1994;53:153–162.
  • Priolo M, Silengo M, Lerone M, Ravazzolo R. Ectodermal dysplasias: not only ‘skin’ deep. Clin Genet 2000;58:415–430.
  • Niehues T, Reichenbach J, Neubert J, et al. Nuclear factor kappa B essential modulator-deficient child with immunodeficiency yet without anhidrotic ectodermal dysplasia. J Allergy Clin Immunol 2004;114:1456–1462.
  • Jain A, Ma CA, Liu S, et al. Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nat Immunol 2001;2:223–228.
  • Orange JS, Brodeur SR, Jain A, et al. Deficient natural killer cell cytotoxicity in patients with IKK-gamma/NEMO mutations. J Clin Invest 2002;109:1501–1509.
  • Hanson EP, Monaco-Shawver L, Solt LA, et al. Hypomorphic nuclear factor-kappaB essential modulator mutation database and reconstitution system identifies phenotypic and immunologic diversity. J Allergy Clin Immunol 2008;122:1169–1177.
  • Orange JS, Jain A, Ballas ZK, et al. The presentation and natural history of immunodeficiency caused by nuclear factor kappa B essential modulator mutation. J Allergy Clin Immunol 2004;113:725–733.
  • Jin B, Sun T, Yu XH, et al. The effects of TLR activation on T-cell development and differentiation. Clin Dev Immunol 2012;2012:836485.
  • Aradhya S, Courtois G, Rajkovic A, et al. Atypical forms of incontinentia pigmenti in males result from mutations of a cytosine tract in exon 10 of NEMO (IKKgamma). Am J Hum Genet 2001;68:765–761.
  • Smahi A, Courtois G, Vabres P, et al. Genomic rearrangement in NEMO impairs NF-kB activation and is a cause of incontinentia pigmenti. Nature 2000;405:466–472.
  • Doffinger R, Smahi A, Bessia C, et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-k B signaling. Nat Genet 2001;27:277–285.
  • Zonana J, Elder ME, Schneider LC, et al. A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO). Am J Hum Genet 2000;67:1555–1562.
  • Mansour S, Woffendin H, Mitton S, et al. Incontinentia pigmenti in a surviving male is accompanied by hypohidrotic ectodermal dysplasia and recurrent infection. Am J Med Genet 2001;99:172–177.
  • Dupuis-Girod S, Corradini N, Hadj-Rabia S, et al. Osteopetrosis, lymphedema, anhydrotic ectodermal dysplasia, and immunodeficiency in a boy and incontinentia pigmenti in his mother. Pediatrics 2002;109:e97.
  • Berlin AL, Paller AS, Chan LS. Incontinentia pigmenti: a review and update on he molecular basis of pathophysiology. J Am Acad Dermatol 2002;47:188–190.
  • Landy SJ, Donnai D. Incontinentia pigmenti (Bloch Sulzberger syndrome). J Med Genet 1993;30:53–59.
  • Holland SM, DeLeo FR, Elloumi HZ, et al. STAT3 mutations in the hyper-IgE syndrome. N Engl J Med 2007;357:1608–1619.
  • Vinh DC, Sugui JA, Hsu AP, et al. Invasive fungal disease in autosomal-dominant hyper-IgE syndrome. J Allergy Clin Immunol 2010;125:1389–1390.
  • Milner JD, Brenchley JM, Laurence A, et al. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 2008;452:773–776.
  • Minegishi Y, Saito M, Morio T, et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 2006;25:745–755.
  • Kilic SS, Hacimustafaoglu M, Boisson-Dupuis S, et al. A patient with tyrosine kinase 2 deficiency without hyper-IgE syndrome. J Pediatr 2012;160:1055–1057.
  • Zhang Q, Davis JC, Lamborn IT, et al. Combined immunodeficiency associated with DOCK8 mutations. N Engl J Med 2009;361:2046–2055.
  • Renner ED, Puck JM, Holland SM, et al. Autosomal recessive hyperimmunoglobulin E syndrome: a distinct disease entity. J Pediatr 2004;144:93–99.
  • Zhang Q, Davis JC, Dove CG, Su HC. Genetic, clinical, and laboratory markers for DOCK8 immunodeficiency syndrome. Dis Markers 2010;29:131–139.
  • Danso-Abeam D, Zhang J, Dooley J, et al. Olmsted syndrome: exploration of the immunological phenotype. Orphanet J Rare Dis 2013;8:79.
  • Ozcan E, Notarangelo LD, Geha RS. Primary immune deficiencies with aberrant IgE production. J Allergy Clin Immunol 2008;122:1054–1062.
  • Itin PH. Ectodermal dysplasia: thoughts and practical concepts concerning disease classification –the role of functional pathways in the molecular genetic diagnosis. Dermatology 2013;226: 111–114.
  • Kwan A, Manning MA, Zollars LK, Hoyme HE. Marked variability in the radiographic features of cartilage-hair hypoplasia: case report and review of the literature. Am J Med Genet 2012;158:2911–2916.
  • Pignata C, Fiore M, Guzzetta V, et al. Congenital alopecia and nail dystrophy associated with severe functional T-cell immunodeficiency in two sibs. Am J Med Genet 1996;65:167–170.
  • Amorosi S, D'Armiento M, Calcagno G, et al. FOXN1 homozygous mutation associated with anencephaly and severe neural tube defect in human athymic Nude/SCID fetus. Clin Genet 2008;73:380–384.
  • Kaufmann E, Knochel W. Five years on the wings of fork head. Mech Dev 1996;57:3–20.
  • Shakib S, Desanti GE, Jenkinson WE, et al. Checkpoints in the development of thymic cortical epithelial cells. J Immunol 2009;182:130–137.
  • Garfin PM, Min D, Bryson JL, et al. Inactivation of the RB family prevents thymus involution and promotes thymic function by direct control of Foxn1 expression. J Exp Med 2013;210:1087–1097.
  • Palamaro L, Guarino V, Scalia G, et al. Human skin-derived keratinocytes and fibroblasts co-culture on 3D poly ϵ-caprolactone scaffold support in vitro HSCs differentiation into T-lineage committed cells. Int Immunol 2013;25:703–714.
  • Romano R, Palamaro L, Fusco A, et al. FOXN1: a master regulator gene of thymic epithelial development program. Front Immunol 2013;4:187.
  • Schorpp M, Hoffmann M, Dear TN, Boehm T. Characterization of mouse and human nude genes. Immunogenetics 1997;46:509–515.
  • Pignata C, Fusco A, Amorosi S. Human clinical phenotype associated with FOXN1 mutations. Adv Exp Med Biol 2009;665:195–206.
  • Vigliano I, Gorrese M, Fusco A, et al. FOXN1 mutation abrogates prenatal T-cell development in humans. J Med Genet 2011;48:413–416.
  • Fusco A, Panico L, Gorrese M, et al. Molecular evidence for a thymus-independent partial T cell development in a FOXN1-athymic human fetus. PLoS One 2013;8:e81786.
  • Auricchio L, Adriani M, Frank J, et al. Nail distrophy associated with a heterozygous mutation of the Nude/SCID human FOXN1 (WHN) gene. Arch Dermatol 2005;141:647–648.
  • Adriani M, Martinez-Mir A, Fusco F, et al. Ancestral founder mutation of the nude (FOXN1) gene in congenital severe combined immunodeficiency associated with alopecia in southern Italy population. Ann Hum Genet 2004;68:265–268.
  • Markert ML, Marques J, Neven B, et al. First use of thymus transplantation therapy for Foxn1 deficiency (Nude/SCID): a report of two cases. Blood 2011;117:688–696.
  • Chou J, Massaad MJ, Wakim RH, et al. A novel mutation in FOXN1 resulting in SCID: a case report and literature review. Clin Immunol 2014;155:30–32.
  • Conner JM, Gatherer D, Gray FC, et al. Assignment of the gene for dyskeratosis congenita to Xq28. Hum Genet 1986;72:348–351.
  • Arngrimsson R, Dokal I, Luzzatto L, Connor JM. Dyskeratosis congenita: three additional families show linkage to a locus in Xq28. J Med Genet 1993;30:618–619.
  • Davidson R, Connor JM. Dyskeratosis congenita. J Med Genet 1988;25:843–846.
  • Ortega JA, Swanson VL, Landig BH, Hammond GD. Congenital dyskeratosis: Zinner–Engman–Cole syndrome with thymic dysplasia and aplastic anemia. Am J Dis Child 1972;124:701–704.
  • Lee BW, Yap HK, Quah TC, et al. T cell immunodeficiency in dyskeratosis congenita. Arch Dis Child 1992;67:524–526.
  • Flanagan SP. “Nude,” a new hairless gene with pleiotropic effects in the mouse. Genet Res 1966;8:295–309.
  • Kšpf-Maier P, Mboneko VF. Anomalies in the hormonal status of athymic nude mice. J Cancer Res Clin Oncol 1990;116:229–231.
  • Pantelouris EM. Absence of thymus in a mouse mutant. Nature 1968;217:370–371.
  • Patel DD, Whichard LP, Radcliff G, et al. Characterization of human thymic epithelial cell surface antigens: phenotypic similarity of thymic epithelial cells to epidermal keratinocytes. J Clin Immunol 1995;15:80–92.
  • Lobach DF, Haynes BF. Ontogeny of the human thymus during fetal development. J Clin Immunol 1987;7:81–97.
  • Koster MI, Roop DR. Mechanisms regulating epithelial stratification. Annu Rev Cell Dev Biol 2007;23:93–113.
  • Green H, Easley K, Iuchi S. Marker succession during the development of keratinocytes from cultured human embryonic stem cells. Proc Natal Acad Sci USA 2003;100:15625–15630.
  • Senoo M, Pinto F, Crum CP, McKeon F. p63 Is essential for the prolifera-tive potential of stem cells in stratified epithelia. Cell 2007;129:523–536.
  • Tadeu AM, Horsley V. Notch signaling represses p63 expression in the developing surface ectoderm. Development 2013;140:3777–3786.
  • Koster MI, Kim S, Huang J, et al. TAp63 induces AP-2 as an early event in epidermal morphogenesis. Dev Biol 2006;289:253–261.
  • Mills AA, Zheng B, Wang XJ, et al. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 1999;398:714–718.
  • Yang A, Schweitzer R, Sun D, et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 1999;398:714–718.
  • Chen T, Heller E, Beronja S, et al. An RNA interference screen uncovers a new molecule in stem cell self-renewal and long-term regeneration. Nature 2012;485:104–108.
  • Jerome LA, Papaioannou VE. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Genet 2001;27:286–291.
  • Packham EA, Brook JD. T-box genes in human disorders. Hum Mol Genet 2003;1:37–44.
  • Lindsay EA, Vitelli F, Su H, et al. Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 2001;410:97–101.
  • Watt FM, Estrach S, Ambler CA. Epidermal notch signalling: differentiation, cancer and adhesion. Curr Opin Cell Biol 2008;20:171–179.
  • Radtke F, Fasnacht N, Macdonald HR. Notch signaling in the immune system. Immunity 2010;29:14–27.
  • Revest JM, Suniara RK, Kerr K, et al. Development of the thymus requires signaling through the fibroblast growth factor receptor R2-IIIb. J Immunol 2001;167:1954–1961.
  • De Moerlooze L, Spencer-Dene B, Revest JM, et al. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signaling during mouse organogenesis. Development 2000;127:483–492.
  • Petiot A, Conti FJ, Grose R, et al. A crucial role for Fgfr2-IIIb signaling in epidermal development and hair follicle patterning. Development 2003;130:5493–5501.
  • Richardson GD, Bazzi H, Fantauzzo KA, et al. KGF and EGF signalling block hair follicle induction and promote interfollicular epidermal fate in developing mouse skin. Development 2009;136:2153–2164.
  • Bonfanti P, Claudinot S, Amici AW, et al. Microenvironmental reprogramming of thymic epithelial cells to skin multipotent stem cells. Nature 2010;488:978–982.
  • Swamy M, Jamora C, Havran W, Hayday A. Epithelial decision makers: in search of the “epimmunome.” Nat Immunol 2010;11:656–665.
  • Palamaro L, Romano R, Fusco A, et al. FOXN1 in organ development and human diseases. Int Rev Immunol 2014;33:83–93.
  • Bredenkamp N, Ulyanchenko S, O'Neill KE, et al. An organized and functional thymus generated from FOXN1-reprogrammed fibroblasts. Nat Cell Biol 2014;16:902–908.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.