1,503
Views
23
CrossRef citations to date
0
Altmetric
Reviews

Dysbiosis and Immune Dysregulation in Outer Space

&
Pages 67-82 | Accepted 10 Feb 2015, Published online: 13 May 2015

REFERENCES

  • Grenon SM, Saary J, Gray G, et al. Can I take a space flight? Considerations for doctors. BMJ 2012;345:e8124.
  • White RJ, Averner M. Humans in space. Nature 2001;409(6823):1115–1118.
  • Crucian B, Sams C. Immune system dysregulation during spaceflight: clinical risk for exploration-class missions. J Leukoc Biol 2009;86(5):1017–1018.
  • Bogomolov VV, Castrucci F, Comtois JM, et al. International Space Station medical standards and certification for space flight participants. Aviat Space Environ Med 2007;78(12):1162–1169.
  • Hamilton DR, Sargsyan AE, Garcia K, et al. Cardiac and vascular responses to thigh cuffs and respiratory maneuvers on crewmembers of the International Space Station. J Appl Physiol 2012;112(3):454–462.
  • Blue RS, Riccitello JM, Tizard J, et al. Commercial spaceflight participant G-force tolerance during centrifuge-simulated suborbital flight. Aviat Space Environ Med 2012;83(10):929–934. doi:10.3357/.1533.MEΣA2102
  • Mermel LA. Infection prevention and control during prolonged human space travel. Clin Infect Dis 2013;56(1):123–130.
  • Crucian B, Raymond PS, Ott CM, et al. Risk of crew adverse health event due to altered immune response. Human research program. Human health countermeasures element. Houston, TX: Johnson Space Center; 2009.
  • Saei AA, Barzegari A. The microbiome: the forgotten organ of the astronaut's body –probiotics beyond terrestrial limits. Future Microbiol 2012;7(9):1037–1046.
  • Cox MJ, Cookson WO, Moffatt MF. Sequencing the human microbiome in health and disease. Hum Mol Genet 2013;22(R1):R88–R94.
  • Zhu B, Wang X, Li L. Human gut microbiome: the second genome of human body. Protein Cell 2010;1(8):718–725.
  • Bischoff SC. “Gut health”: a new objective in medicine? BMC Med 2011;9:24.
  • Spasova DS, Surh CD. Blowing on embers: commensal microbiota and our immune system. Front Immunol [Rev] 2014;5:318.
  • Lee YK, Mazmanian SK. Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 2010;330(6012):1768–1773.
  • Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science 2012;336(6086):1268–1273.
  • Kamada N, Chen GY, Inohara N, Nunez G. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol 2013;14(7):685–690.
  • Kamada N, Nunez G. Regulation of the immune system by the resident intestinal bacteria. Gastroenterology 2014;146(6):1477–1488.
  • Kinross JM, Darzi AW, Nicholson JK. Gut microbiome-host interactions in health and disease. Genome Med 2011;3(3):14.
  • Huse SM, Dethlefsen L, Huber JA, et al. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet 2008;4(11):e1000255.
  • Willyard C. Microbiome: gut reaction. Nature 2011;479(7374):S5–S7.
  • Dumas ME, Maibaum EC, Teague C, et al. Assessment of analytical reproducibility of 1H NMR spectroscopy based metabonomics for large-scale epidemiological research: the INTERMAP study. Anal Chem 2006;78(7):2199–2208.
  • Gorbach SL, Kean BH, Evans DG, et al. Travelers’ diarrhea and toxigenic escherichia coli. N Engl J Med 1975;292(18):933–936.
  • Saavedra JM. Clinical applications of probiotic agents. Am J Clin Nutr 2001;73(6):1147S–1151S.
  • Bailey MT, Dowd SE, Galley JD, et al. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav Immun 2011;25(3):397–407.
  • Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 2008;453(7195):620–625.
  • Gueguinou N, Huin-Schohn C, Bascove M, et al. Could spaceflight-associated immune system weakening preclude the expansion of human presence beyond Earth's orbit? J Leukoc Biol 2009;86(5):1027–1038.
  • Dickson KJ. Summary of biological spaceflight experiments with cells. ASGSB Bull 1991;4(2):151–260.
  • Mishra SK, Pierson DL. Space flight: effects on microorganisms. San Diego, CA: Academic Press; 1992.
  • Kacena MA, Merrell GA, Manfredi B, et al. Bacterial growth in space flight: logistic growth curve parameters for Escherichia coli and Bacillus subtilis. Appl Microbiol Biotechnol 1999;51(2):229–234.
  • Klaus DM. Space microbiology: microgravity and microorganisms. New York, NY: John Wiley; 2002.
  • Nickerson CA, Ott CM, Wilson JW, et al. Low-shear modeled microgravity: a global environmental regulatory signal affecting bacterial gene expression, physiology, and pathogenesis. J Microbiol Methods 2003;54(1):1–11.
  • Nickerson CA, Ott CM, Mister SJ, et al. Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence. Infect Immun 2000;68(6):3147–3152.
  • Nickerson CA, Ott CM, Wilson JW, et al. Microbial responses to microgravity and other low-shear environments. Microbiol Mol Biol Rev 2004;68(2):345–361.
  • Wilson JW, Ott CM, Honer zu Bentrup K, et al. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc Natl Acad Sci USA 2007;104(41):16299–16304.
  • Rosenzweig JA, Abogunde O, Thomas K, et al. Spaceflight and modeled microgravity effects on microbial growth and virulence. Appl Microbiol Biotechnol 2010;85(4):885–891.
  • Crabbe A, Schurr MJ, Monsieurs P, et al. Transcriptional and proteomic responses of Pseudomonas aeruginosa PAO1 to spaceflight conditions involve Hfq regulation and reveal a role for oxygen. Appl Environ Microbiol 2011;77(4):1221–1230.
  • Wilson JW, Ott CM, Ramamurthy R, et al. Low-shear modeled microgravity alters the Salmonella enterica serovar typhimurium stress response in an RpoS-independent manner. Appl Environ Microbiol 2002;68(11):5408–5416.
  • Wilson JW, Ott CM, Quick L, et al. Media ion composition controls regulatory and virulence response of Salmonella in spaceflight. PLoS One 2008;3(12):e3923.
  • Mauclaire L, Egli M. Effect of simulated microgravity on growth and production of exopolymeric substances of Micrococcus luteus space and earth isolates. FEMS Immunol Med Microbiol 2010;59(3):350–356.
  • Tixador R, Richoilley G, Gasset G, et al. Study of minimal inhibitory concentration of antibiotics on bacteria cultivated in vitro in space (Cytos 2 experiment). Aviat Space Environ Med 1985;56(8):748–751.
  • Tixador R, Richoilley G, Gasset G, et al. Preliminary results of Cytos 2 experiment. Acta Astronaut 1985;12(2):131–134.
  • Lapchine L, Moatti N, Gasset G, et al. Antibiotic activity in space. Drugs Exp Clin Res 1986;12(12):933–938.
  • Crabbe A, De Boever P, Van Houdt R, et al. Use of the rotating wall vessel technology to study the effect of shear stress on growth behaviour of Pseudomonas aeruginosa PA01. Environ Microbiol 2008;10(8):2098–2110.
  • Foster JS, Khodadad CL, Ahrendt SR, Parrish ML. Impact of simulated microgravity on the normal developmental time line of an animal-bacteria symbiosis. Sci Rep 2013;3:1340.
  • Ilyin VK. Microbiological status of cosmonauts during orbital spaceflights on Salyut and Mir orbital stations. Acta Astronaut 2005;56(9–12):839–850.
  • Lencner AA, Lencner CP, Mikelsaar ME, et al. The quantitative composition of the intestinal lactoflora before and after space flights of different lengths. Nahrung 1984;28(6–7):607–613.
  • Decelle JG, Taylor GR. Autoflora in the upper respiratory tract of Apollo astronauts. Appl Environ Microbiol 1976;32(5):659–665.
  • Brown LR, Fromme WJ, Handler SF, et al. Effect of Skylab missions on clinical and microbiologic aspects of oral health. J Am Dent Assoc 1976;93(2):357–363.
  • Petersen C, Round JL. Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol 2014;16(7):1024–1033.
  • Lizko NN, Silov VM, Syrych GD. Events in he development of dysbacteriosis of the intestines in man under extreme conditions. Nahrung 1984;28(6–7):599–605.
  • Barzegari A, Saei AA. Designing probiotics with respect to the native microbiome. Future Microbiol 2012;7(5):571–575.
  • Nefedov YG, Shilov VM, Konstantinova IV, Zaloguyev SN. Microbiological and immunological aspects of extended manned space flights. Life Sci Space Res 1971;9:11–16.
  • Taylor PW, Sommer AP. Towards rational treatment of bacterial infections during extended space travel. Int J Antimicrob Agents 2005;26(3):183–187.
  • Hales NW, Yamauchi K, Alicea A, et al. A countermeasure to ameliorate immune dysfunction in in vitro simulated microgravity environment: role of cellularnucleotide nutrition. In Vitro Cell Dev Biol Anim 2002;38(4):213–217.
  • Ritchie LE, Zwart SR, Smith SM, et al. Impact of the space environment on intestinal homeostasis: characterizing alterations to the intestinal microbiota. 2014 NASA Human Research Program Investigators’ Workshop ((HRP 2014), Galveston, TX; 2014.
  • Turnbaugh PJ, Ley RE, Hamady M, et al. The human microbiome project. Nature 2007; 449(7164):804–810.
  • Lozupone CA, Stombaugh JI, Gordon JI, et al. Diversity, stability and resilience of the human gut microbiota. Nature 2012;489(7415):220–230.
  • Ursell LK, Clemente JC, Rideout JR, et al. The interpersonal and intrapersonal diversity of human-associated microbiota in key body sites. J Allergy Clin Immunol 2012;129(5):1204–1208.
  • Hamady M, Knight R. Microbial community profiling for human microbiome projects: tools, techniques, and challenges. Genome Res 2009;19(7):1141–1152.
  • Shade A, Handelsman J. Beyond the Venn diagram: the hunt for a core microbiome. Environ Microbiol 2012;14(1):4–12.
  • Zaura E, Keijser BJ, Huse SM, Crielaard W. Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol 2009;9:259.
  • Tap J, Mondot S, Levenez F, et al. Towards the human intestinal microbiota phylogenetic core. Environ Microbiol 2009;11(10):2574–2584.
  • Huse SM, Ye Y, Zhou Y, Fodor AA. A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS One 2012;7(6):e34242.
  • Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010;464(7285):59–65.
  • Bartlett JG. Narrative review: the new epidemic of Clostridium difficile-associated enteric disease. Ann Intern Med 2006;145(10):758–764.
  • Dapa T, Unnikrishnan M. Biofilm formation by Clostridium difficile. Gut Microbes 2013;4(5):397–402.
  • Klaus DM, Howard HN. Antibiotic efficacy and microbial virulence during space flight. Trends Biotechnol 2006;24(3):131–136.
  • Xiao Y, Liu Y, Wang G, et al. Simulated microgravity alters growth and microcystin production in Microcystis aeruginosa (cyanophyta). Toxicon 2010;56(1):1–7.
  • Chopra V, Fadl AA, Sha J, et al. Alterations in the virulence potential of enteric pathogens and bacterial-host cell interactions under simulated microgravity conditions. J Toxicol Environ Health A 2006;69(14):1345–1370.
  • Chao Y, Vogel J. The role of Hfq in bacterial pathogens. Curr Opin Microbiol 2010;13(1):24–33.
  • Allen CA, Niesel DW, Torres AG. The effects of low-shear stress on Adherent-invasive Escherichia coli. Environ Microbiol 2008;10(6):1512–1525.
  • Searles SC, Woolley CM, Petersen RA, et al. Modeled microgravity increases filamentation, biofilm formation, phenotypic switching, and antimicrobial resistance in Candida albicans. Astrobiology 2011;11(8):825–836.
  • Costerton JW. Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. Trends Microbiol 2001;9(2):50–52.
  • Hall MR, McGillicuddy E, Kaplan LJ. Biofilm: basic principles, pathophysiology, and implications for clinicians. Surg Infect (Larchmt) 2014;15(1):1–7.
  • Balaban N, Stoodley P, Fux CA, et al. Prevention of staphylococcal biofilm-associated infections by the quorum sensing inhibitor RIP. Clin Orthop Relat Res 2005(437):48–54.
  • Wozniak DJ, Parsek MR. Surface-associated microbes continue to surprise us in their sophisticated strategies for assembling biofilm communities. F1000Prime Rep 2014;6:26. doi:10.12703/P6-26
  • Lynch SV, Mukundakrishnan K, Benoit MR, et al. Escherichia coli biofilms formed under low-shear modeled microgravity in a ground-based system. Appl Environ Microbiol 2006;72(12):7701–7710.
  • Crabbe A, Pycke B, Van Houdt R, et al. Response of Pseudomonas aeruginosa PAO1 to low shear modelled microgravity involves AlgU regulation. Environ Microbiol 2010;12(6):1545–1564.
  • Kim W, Tengra FK, Young Z, et al. Spaceflight promotes biofilm formation by Pseudomonas aeruginosa. PLoS One 2013;8(4):e62437.
  • Tixador R, Gasset G, Eche B, et al. Behavior of bacteria and antibiotics under space conditions. Aviat Space Environ Med 1994;65(6):551–556.
  • Fukuda T, Fukuda K, Takahashi A, et al. Analysis of deletion mutations of the rpsL gene in the yeast Saccharomyces cerevisiae detected after long-term flight on the Russian space station Mir. Mutat Res 2000;470(2):125–132.
  • Matin A, Lynch SV, Benoit MR. Increased bacterial resistance and virulence in simulated microgravity and its molecular basis. Gravit Space Res 2007;19(2):31–41.
  • Taylor GR. Overview of spaceflight immunology studies. J Leukoc Biol 1993;54(3):179–188.
  • Crucian B, Simpson RJ, Mehta S, et al. Terrestrial stress analogs for spaceflight associated immune system dysregulation. Brain Behav Immun 2014; 39:23–32.
  • Cohrs RJ, Mehta SK, Schmid DS, et al.Asymptomatic reactivation and shed of infectious varicella zoster virus in astronauts. J Med Virol 2008;80(6):1116–1122.
  • Stowe RP, Sams CF, Pierson DL. Effects of mission duration on neuroimmune responses in astronauts. Aviat Space Environ Med 2003;74(12):1281–1284.
  • Mehta SK, Laudenslager ML, Stowe RP, et al. Multiple latent viruses reactivate in astronauts during space shuttle missions. Brain Behav Immun 2014;41:210–217.
  • Yi B, Rykova M, Feuerecker M, et al. 520-D isolation and confinement simulating a flight to Mars reveals heightened immune responses and alterations of leukocyte phenotype. Brain Behav Immun 2014;40:203–210.
  • Hecht G. Innate mechanisms of epithelial host defense: spotlight on intestine. Am J Physiol 1999;277(3, Pt 1):C351–C358.
  • Shearer WT, Ochs HD, Lee BN, et al. Immune responses in adult female volunteers during the bed-rest model of spaceflight: antibodies and cytokines. J Allergy Clin Immunol 2009;123(4):900–905.
  • Crucian B, Lee P, Stowe R, et al. Immune system changes during simulated planetary exploration on Devon Island, high arctic. BMC Immunol 2007;8:7.
  • Lugg D, Shepanek M. Space analogue studies in Antarctica. Acta Astronaut 1999;44(7–12):693–699.
  • Muller HK, Lugg DJ, Quinn D. Cell mediated immunity in Antarctic wintering personnel; 1984–1992. Immunol Cell Biol 1995;73(4):316–320.
  • Uchakin PN, Uchakina ON, Morukov BV, et al. The endogenous regulation of the cytokine disbalance in humans subjected to simulated spaceflight environment. Vestn Ross Akad Med Nauk 2006(7):15–20.
  • Sonnenfeld G. The immune system in space, including Earth-based benefits of space-based research. Curr Pharm Biotechnol 2005;6(4):343–349.
  • Taylor GR, Konstantinova I, Sonnenfeld G, Jennings R. Changes in the immune system during and after spaceflight. Adv Space Biol Med 1997;6:1–32.
  • Sanzari JK, Romero-Weaver AL, James G, et al. Leukocyte activity is altered in a ground based murine model of microgravity and proton radiation exposure. PLoS One 2013;8(8):e71757.
  • Bakos A, Varkonyi A, Minarovits J, Batkai L. Effect of simulated microgravity on human lymphocytes. J Gravit Physiol 2001;8(1):P69–P70.
  • Cubano LA, Maldonado HM. Immune cells under altered gravity conditions. Bol Asoc Med P R 2006;98(3):223–228.
  • Allebban Z, Ichiki AT, Gibson LA, et al. Effects of spaceflight on the number of rat peripheral blood leukocytes and lymphocyte subsets. J Leukoc Biol 1994;55(2):209–213.
  • Ichiki AT, Gibson LA, Jago TL, et al. Effects of spaceflight on rat peripheral blood leukocytes and bone marrow progenitor cells. J Leukoc Biol 1996;60(1):37–43.
  • Verhaar AP, Hoekstra E, Tjon AS, et al. Dichotomal effect of space flight-associated microgravity on stress-activated protein kinases in innate immunity. Sci Rep 2014;4:5468.
  • Wilder-Smith A, Mustafa FB, Peng CM, et al. Transient immune impairment after a simulated long-haul flight. Aviat Space Environ Med 2012;83(4):418–423.
  • Stowe RP, Sams CF, Mehta SK, et al. Leukocyte subsets and neutrophil function after short-term spaceflight. J Leukoc Biol 1999;65(2):179–186.
  • Kaur I, Simons ER, Castro VA, et al. Changes in neutrophil functions in astronauts. Brain Behav Immun 2004;18(5):443–450.
  • Mills PJ, Meck JV, Waters WW, et al. Peripheral leukocyte subpopulations and catecholamine levels in astronauts as a function of mission duration. Psychosom Med 2001;63(6):886–890.
  • Kaur I, Simons ER, Castro VA, et al. Changes in monocyte functions of astronauts. Brain Behav Immun 2005;19(6):547–554.
  • Armstrong JW, Gerren RA, Chapes SK. The effect of space and parabolic flight on macrophage hematopoiesis and function. Exp Cell Res 1995;216(1):160–168.
  • Chapes SK, Morrison DR, Guikema JA, et al. Cytokine secretion by immune cells in space. J Leukoc Biol 1992;52(1):104–110.
  • Batkai L, Varkonyi A, Minarovits J. The effect of simulated microgravity conditions on the TNF-alpha production by human PBMCS. J Gravit Physiol 1999;6(1):P109–P110.
  • Savary CA, Grazziuti ML, Przepiorka D, et al. Characteristics of human dendritic cells generated in a microgravity analog culture system. In Vitro Cell Dev Biol Anim 2001;37(4): 216–222.
  • Lewis ML, Reynolds JL, Cubano LA, et al. Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat). FASEB J 1998;12(11):1007–1018.
  • Yang TC, George K, Johnson AS, et al. Biodosimetry results from space flight Mir-18. Radiat Res 1997;148(5 Suppl):S17–S23.
  • Obe G, Johannes I, Johannes C, et al. Chromosomal aberrations in blood lymphocytes of astronauts after long-term space flights. Int J Radiat Biol 1997;72(6):727–734.
  • Pellis NR, Goodwin TJ, Risin D, et al. Changes in gravity inhibit lymphocyte locomotion through type I collagen. In Vitro Cell Dev Biol Anim 1997;33(5):398–405.
  • Crucian BE, Zwart SR, Mehta S, et al. Plasma cytokine concentrations indicate that in vivo hormonal regulation of immunity is altered during long-duration spaceflight. J Interferon Cytokine Res. 2014;34(10):778–786.
  • Degan P, Sancandi M, Zunino A, et al. Exposure of human lymphocytes and lymphoblastoid cells to simulated microgravity strongly affects energy metabolism and DNA repair. J Cell Biochem 2005;94(3):460–469.
  • Hauschild S, Tauber S, Lauber B, et al. T cell regulation in microgravity. The current knowledge from in vitro experiments conducted in space, parabolic flights and ground-based facilities. Acta Astronautica 2014;104(1):365–377.
  • Crescio C, Orecchioni M, Menard-Moyon C, et al. Immunomodulatory properties of carbon nanotubes are able to compensate immune function dysregulation caused by microgravity conditions. Nanoscale 2014;6(16):9599–9603.
  • Pescatori M, Bedognetti D, Venturelli E, et al. Functionalized carbon nanotubes as immunomodulator systems. Biomaterials 2013;34(18):4395–4403.
  • Luo H, Wang C, Feng M, Zhao Y. Microgravity inhibits resting T cell immunity in an exposure time-dependent manner. Int J Med Sci 2014;11(1):87–96.
  • Walther I, Pippia P, Meloni MA, et al. Simulated microgravity inhibits the genetic expression of interleukin-2 and its receptor in mitogen-activated T lymphocytes. FEBS Lett 1998;436(1):115–118.
  • Hashemi BB, Penkala JE, Vens C, et al. T cell activation responses are differentially regulated during clinorotation and in spaceflight. FASEB J 1999;13(14):2071–2082.
  • Sonnenfeld G, Davis S, Taylor GR, et al. Effect of space flight on cytokine production and other immunologic parameters of rhesus monkeys. J Interferon Cytokine Res 1996;16(5):409–415.
  • McCarville JL, Clarke ST, Shastri P, et al. Spaceflight influences both mucosal and peripheral cytokine production in PTN-Tg and wild type mice. PLoS One 2013;8(7):e68961.
  • Licato LL, Grimm EA. Multiple interleukin-2 signaling pathways differentially regulated by microgravity. Immunopharmacology 1999;44(3):273–279.
  • Mehta SK, Kaur I, Grimm EA, et al. Decreased non-MHC-restricted (CD56+) killer cell cytotoxicity after spaceflight. J Appl Physiol (1985) 2001;91(4):1814–1818.
  • Meshkov D, Rykova M. The natural cytotoxicity in cosmonauts on board space stations. Acta Astronaut 1995;36(8–12):719–726.
  • Grove DS, Pishak SA, Mastro AM. The effect of a 10-day space flight on the function, phenotype, and adhesion molecule expression of splenocytes and lymph node lymphocytes. Exp Cell Res 1995;219(1):102–109.
  • Meloni MA, Galleri G, Camboni MG, et al. Modeled microgravity affects motility and cytoskeletal structures. J Gravit Physiol 2004;11(2):P197–P198.
  • Meloni MA, Galleri G, Pippia P, Cogoli-Greuter M. Cytoskeleton changes and impaired motility of monocytes at modelled low gravity. Protoplasma 2006;229(2–4):243–249.
  • Lewis ML, Cubano LA, Zhao B, et al. cDNA microarray reveals altered cytoskeletal gene expression in space-flown leukemic T lymphocytes (Jurkat). FASEB J 2001;15(10):1783–1785.
  • Hughes-Fulford M. Function of the cytoskeleton in gravisensing during spaceflight. Adv Space Res 2003;32(8):1585–1593.
  • Hughes-Fulford M. Signal transduction and mechanical stress. Sci STKE 2004;(249):RE12.
  • Xu X, Tan C, Li P, et al. Changes of cytokines during a spaceflight analog –a 45-day head-down bed rest. PLoS One 2013;8(10):e77401.
  • Voss EW, Jr. Prolonged weightlessness and humoral immunity. Science 1984;225(4658):214–215.
  • Konstantinova IV, Rykova MP, Lesnyak AT, Antropova EA. Immune changes during long-duration missions. J Leukoc Biol 1993;54(3):189–201.
  • Zhou Y, Ni H, Li M, et al. Effect of solar particle event radiation and hindlimb suspension on gastrointestinal tract bacterial translocation and immune activation. PLoS One 2012;7(9):e44329.
  • Suzuki K, Nakaji S, Yamada M, et al. Systemic inflammatory response to exhaustive exercise. Cytokine kinetics. Exerc Immunol Rev 2002;8:6–48.
  • Chang TT, Walther I, Li CF, et al. The Rel/NF-kappaB pathway and transcription of immediate early genes in T cell activation are inhibited by microgravity. J Leukoc Biol 2012;92(6): 1133–1145.
  • Boonyaratanakornkit JB, Cogoli A, Li CF, et al. Key gravity-sensitive signaling pathways drive T cell activation. FASEB J 2005;19(14):2020–2022.
  • Monroe KM, McWhirter SM, Vance RE. Induction of type I interferons by bacteria. Cell Microbiol 2010;12(7):881–890.
  • Lenz LL, Eshleman EM. Type I interferons in bacterial infections: taming of myeloid cells and possible implications for autoimmunity. Front Immunol [Rev] 2014;5.
  • Chapes SK, Morrison DR, Guikema JA, et al. Production and action of cytokines in space. Adv Space Res 1994;14(8):5–9.
  • Sonnenfeld G. The immune system in space and microgravity. Med Sci Sports Exerc 2002;34(12):2021–2027.
  • Madsen K. Probiotics and the immune response. J Clin Gastroenterol 2006;40(3):232–234.
  • Somova LA, Pechurkin NS. Management and control of microbial populations’ development in LSS of missions of different durations. Adv Space Res 2005;35(9):1621–1625.
  • Isolauri E, Kirjavainen PV, Salminen S. Probiotics: a role in the treatment of intestinal infection and inflammation? Gut 2002;50(Suppl 3):III54–III59.
  • Reid G. Safety of lactobacillus strains as probiotic agents. Clin Infect Dis 2002;35(3):349–350.
  • Buckley ND, Champagne CP, Masotti AI, et al. Harnessing functional food strategies for the health challenges of space travel. Fermented soy for astronaut nutrition. Acta Astronautica 2011;68(7–8):731–738.
  • Isolauri E, Majamaa H, Arvola T, et al. Lactobacillus casei strain GG reverses increased intestinal permeability induced by cow milk in suckling rats. Gastroenterology 1993;105(6):1643–1650.
  • Kaila M, Isolauri E, Soppi E, et al. Enhancement of the circulating antibody secreting cell response in human diarrhea by a human Lactobacillus strain. Pediatr Res 1992;32(2):141–144.
  • Shroff KE, Meslin K, Cebra JJ. Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut. Infect Immun 1995;63(10):3904–3913.
  • Yasui H, Nagaoka N, Mike A, et al. Detection of bifidobacterium strains that induce large quantities of IgA. Microb Ecol Health Disease 1992;5(3):155–162
  • de Vrese M, Rautenberg P, Laue C, et al. Probiotic bacteria stimulate virus-specific neutralizing antibodies following a booster polio vaccination. Eur J Nutr 2005;44(7):406–413.
  • Isolauri E, Joensuu J, Suomalainen H, et al. Improved immunogenicity of oral D x RRV reassortant rotavirus vaccine by lactobacillus casei GG. Vaccine 1995;13(3):310–312.
  • Galdeano CM, Perdigon G. The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin Vaccine Immunol 2006;13(2):219–226.
  • De Simone C, Salvadori BB, Negri R, et al. The adjuvant effect of yogurt on production of gamma-interferon by Con A-stimulated human peripheral blood lymphocytes. Nutrition Reports Int (USA) 1986:419–433.
  • Halpern GM, Vruwink KG, Van de Water J, et al. Influence of long-term yoghurt consumption in young adults. Int J Immunother 1991;7(4):205–210
  • Kato I, Yokokura T, Mutai M. Macrophage activation by Lactobacillus casei in mice. Microbiol Immunol 1983;27(7):611–618.
  • Perdigon G, Maldonado Galdeano C, Valdez JC, Medici M. Interaction of lactic acid bacteria with the gut immune system. Eur J Clin Nutr 2002;56(Suppl 4):S21–S26.
  • Thomas CM, Versalovic J. Probiotics-host communication. 2010.
  • Majamaa H, Isolauri E. Probiotics: a novel approach in the management of food allergy. J Allergy Clin Immunol 1997;99(2):179–185.
  • Cooper M CP, Elliot T, Oubre CM. Development of spaceflight foods with high microbial concentrations. SHFH/advanced food technology and advanced environmental health. Washington DC: NASA; 2011.
  • Kulkarni AD, Yamauchi K, Sundaresan A, et al. Countermeasure for space flight effects on immune system: nutritional nucleotides. Gravit Space Biol Bull 2005;18(2):101–102.
  • Riera J, Pons V, Martinez-Puig D, et al.et al. Dietary nucleotide improves markers of immune response to strenuous exercise under a cold environment. J Int Soc Sports Nutr 2013;10(1):20.
  • Xu M, Zhao M, Yang R, et al. Effect of dietary nucleotides on immune function in Balb/C mice. Int Immunopharmacol 2013;17(1):50–56.
  • Chen X, Oppenheim JJ, Howard OM. BALB/C mice have more CD4+CD25+ T regulatory cells and show greater susceptibility to suppression of their CD4+CD25- responder T cells than C57BL/6 mice. J Leukoc Biol 2005;78(1):114–121.
  • Turner ND, Braby LA, Ford J, Lupton JR. Opportunities for nutritional amelioration of radiation-induced cellular damage. Nutrition 2002;18(10):904–912.
  • Marino AA, Wolcott RM, Chervenak R, et al. Nonlinear response of the immune system to power-frequency magnetic fields. Am J Physiol Regul Integr Comp Physiol 2000;279(3):R761–R768.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.