27
Views
10
CrossRef citations to date
0
Altmetric
Original Article

Differentiation and Function of Intestinal Intraepithelial Lymphocytes

, &
Pages 47-60 | Received 30 Sep 1993, Published online: 10 Jul 2009

References

  • Sprent J. T. lymphocytes and thymus. Fundamental Immunologysecond edition, W. Paul. Raven Press, New York 1989; 69
  • Rocha B., Vassalli P., Guy-Grand D. The extrathymic T cell development pathway. Immunol. Today 1992; 13: 449
  • Guy-Grand D., Cerf-Bensussan N., Malissen B., Malassis-Seris M., Briottet C., Vassalli P. Two gut intraepithelial CD8+ lymphocyte populations with different T cell receptors: A role for gut epithelium in T cell differentiation. J. Exp. Med 1991; 173: 471
  • Maloy K. J., McMoawt A. I., Zamoyska R., Crispe I. N. Phenotypic heterogeneity of intraepithelial T lymphocytes from mouse small intestine. Immunology 1991; 72: 555
  • Mosely L., Styre D., Kleinm J. R. CD4+CD8+ murine intestinal intraepithelial lymphocytes. Int. Immunol 1990; 2: 361
  • Lefrancois L. Phenotypic complexity of intraepithelial lymphocytes of the small intestine. J. Immunol 1991; 147: 1746
  • De Geus B. M., Van den Enden C., Coolen L., Nagelkerken P., Van den Heeijden R., Rozing J. J. Phenotype of intraepithelial lymphocytes in euthymic and athymic mice: implications for differentiation of cells bearing a CD3-associated γδ T cell receptor. Eur. J. Immunol 1990; 20: 291
  • Goodman T., Lefrançois L. Expression of the γ-δ T-cell receptor on intestinal CD8+ intraepithelial lymphocytes. Nature 1988; 333: 855
  • Lin T., Matsuzaki G., Kenai H., Nakamura T., Nomoto K. Thymus influences the development of extrathymically derived intestinal intraepithelial lymphocytes. Eur. J. Immunol 1993; 23: 1968
  • Bandeira A., Mota-Santos T., Itohara S., Degermann S., Heussser C., Tonegawa S., Coutinho A. Localization of γδ T cells to the intestinal epithelium is in dependent of normal microbial colonization. J. Exp. Med 1990; 172: 239
  • Bandeira A., Itohara S., Bonneville M., Burlein-Defranoux O., Mota-Santos T., Coutinho A., Tonegawa S. Extrathymic origin of intestinal intraepithelial lymphocytes bearing T-antigen receptor γδ. Proc. Natl. Acad. Sci. USA 1991; 88: 43
  • Murosaki S., Yoshikai Y., Ishida A., Nakamura T., Matsuzaki G., Takimoto H., Yuuki H., Nomoto K. Failure of T cell receptor Vβ negative selection in murine intestinal intraepithelial lymphocytes. Int. Immunol 1991; 3: 1105
  • Poussier R., Edouard P., Lee C., Binnie M., Julius M. Thymus-independent development and negative selection of T cells expressing T cell receptor α/β in the intestinal epithelium: evidence for distinct circulation patterns of gut- and thymus-derived T lymphocytes. J. Exp. Med 1992; 187: 187
  • Whetsell M., Mosley R. L., Whetsell L., Schaefer E., Miller K., Klein J. R. Rearrangement and junctional-site sequence analyses of T-cell receptor gamma genes in intestinal intraepithelial lymphocytes from murine athymic chimeras. Mol. Cell. Biol 1991; 11: 5902
  • Carding R. S., Kyes S., Jenkinson E. J., Kingston R., Bottomley K., Owen J. J. T., Hayday A. C. Developmentally regulated fetal thymic and extrathymic T-cell receptor γδ gene expression. Genes Devel 1990; 4: 1304
  • Takeuchi M., Miyazaki H., Mirokawa K., Yokokura T., Yoshikai Y. Age-associated changes of T cell subsets in intestinal intraepithelial lymphocytes of mice. Eur. J. Immunol 1993; 23: 1409
  • Marrack P., Kappler J. The staphylococcal enterotoxins and their relatives. Science 1990; 248: 705
  • Rocha B., Vassalli P., Guy-Grand D. The Vβ repertoire of mouse gut homodimeric α CD8+ intraepithelial T cell receptor α/β+ lymphocytes reveals a major extrathymic pathway of T cell differentiation. J. Exp. Med 1991; 173: 483
  • Makino Y., Yamagata Y., Sasho T., Adachi Y., Kanno R., Koseki H., Kanno M., Taniguchi M. Extrathymic development of Vα14-positive T cells. J. Exp. Med 1993; 177: 1399
  • Guy-Grand D., Grischelli C., Vassalli P. The mouse gut T lymphocyte, a novel type of T cell: nature, origin, and traffic in mice in normal and graft-versus-host conditions. J. Exp. Med 1978; 148: 1661
  • Cuff C. E., Cebra C. K., Rubin D. H., Cebra J. J. Developmental relationship between cytotoxic α/β T cell receptor-positive intraepithelial lymphocytes and Peyer's patch lymphocytes. Eur. J. Immunol 1993; 23: 1333
  • Mosley R. L., Klein J. R. peripheral engraftment of fetal intestine into athymic mice sponsors T cell development: direct evidence for thymopoietic function of murine small intestine. J. Exp. Med 1992; 176: 1365
  • Hair J. The morphogenesis of thymus in nude and normal mice. Proceedings of the First International Workshop on Nude Mice, J. Rygaard, C. O. Povelsen. Gustav Fischer Verlag, Stuttgart 1973; 23
  • von Boehmer H. The developmental biology of T lymphocytes. Annu. Rev. Immunol 1988; 6: 309
  • Guy-Grand D., Broecke C. V., Briottett C., Malassis-Seris M., Selsz F., Vassalli P. Different expression of the recombination activating gene RAG-1 in various populations of thymocytes, peripheral T cells and gut thymus-independent intraepithelial lymphocytes suggests two pathways of T cell receptor rearrangement. Eur. J. Immunol 1992; 22: 505
  • Dunon D., Cooper M., Imhof B. A. Thymic origin of embryonic intestinal γ/δ T cells. J. Exp. Med 1993; 177: 257
  • Kenai H., Matsuzaki G., Nakamura T., Yoshikai Y., Nomoto K. Thymus-derived cytokine(s) including interleukin-7 induce increase of T cell receptor α/β+ CD4−CD8− T cells which are extrathymically differentiated in athymic nude mice. Eur. J. Immunol 1993; 23: 1818
  • Dent A. L., Matis L. A., Hooshmand E., Widacki S. M., Bluestone J. A., Hedrick S. Self-reactive gd T cells are eliminated in the thymus. Nature 1990; 343: 714
  • Bonneville M., Ishida I., Itohara S., Verbeek S., Berns A., Kanagawa O., Haas W., Tonegawa S. Self-tolerance to transgenic γδ T cells by intrathymic inactivation. Nature, 344: 163, 199
  • Barrett T. A., Celvy M. L., Kennedy D. M., Lefrancois L., Matis L. A., Dent A. L., Hedrick S. M., Bluestone J. A. Mechanism of self-tolerance of γ/δ T cells in epithelial tissue. J. Exp. Med 1992; 175: 65
  • Barrett T. A., Tatsumi Y., Bluestone J. A. Tolerance of T cell receptor γ/δ cells in the intestine. J. Exp. Med 1993; 177: 1755
  • Lefrancois L., LeCorre R., Mayo I., Bluestone J. A., Goodman T. Extrathymic selection of TCRγδ+ T cells by class II major histocompatibility complex molecules. Cell 1990; 63: 333
  • Tauchi Y., Matsuzaki G., Takimoto H., Yoshikai Y., Nomoto K. A new subpopulation of intraepithelial lymphocytes expressing high level of T cell receptor γδ. Eur. J. Immunol 1992; 22: 2465
  • Cerf-Bensussan N., Quaroni A., Kurnick J. T., Bhan A. K. Intraepithelial lymphocytes modulate la expression by intestinal epithelial cells. J. Immunol 1984; 132: 2244
  • Bland P. W., Warren L. G. Antigen presentation by epithelial cells of the rat small intestine. I. Kinetics, antigen specificity and blocking by anti-la antisera. Immunology 1986; 58: 1
  • Kaiserlian D., Vidal K., Revillard J. -P. Murine enterocytes can present soluble antigen to specific class II-restricted CD4+ T cells. Eur. Immunol J 1989; 19: 1513
  • Schleussner C., Ceredig R. Analysis of intraepithelial lymphocytes from major histocompatibility complex (MHC)-deficient mice: no evidence for a role of MHC class II antigens in the positive selection of Vδ4+γδ T cells. Eur. J. Immunol 1993; 23: 1615
  • Correa I., Bix M., Liao N. -S., Zijlstra M., Jaenish R., Raulet D. Most γδ T cells develop normally in β2-microglobulin-deficient mice. Proc. Natl. Acad. Sci. USA 1992; 89: 653
  • Rocha B., von Boehmer H., Guy-Grand D. Selection of intraepithelial lymphocytes with CD8α/α co-receptors by self-antigen in the murine gut. Proc. Natl. Acad. Sci. USA 1992; 89: 5336
  • Umesaki Y., Setoyama H., Matsumoto S., Okada Y. Expansion of αβ T-cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus. Immunology 1993; 79: 32
  • Parrot D. M. C., Tait C., MacKenzie S., Mowat A., MeI, Davies M. D. I., Micklem H. S. Analysis of the effector functions of different populations of mucosal lymphocytes. Ann. N.Y. Acad. Sci 1983; 409: 307
  • Carman P. S., Ernst P. B., Rosenthal K. L., Clark D. A., Befus A. D., Bienenstock J. Intraepithelial leukocytes contain a unique subpopulation of NK-like cytotoxic cells active in the defense of gut epithelium to enteric murine coronavirus. J. Immunol 1986; 136: 1548
  • Guy-Grand D., Mallassis-Seris M., Briottet C., Vassalli P. Cytotoxic differentiation of mouse gut thymodependent and independent intraepithelial T lymphocytes is induced locally. Correlation between functional assays, presence of perforin and granzyme transcripts, and cytoplasmic granules. J. Exp. Med 1991; 173: 1549
  • Viney J. L., Kilshaw P. J., MacDonald T. T. Cytotoxic α/β+ and γ/δ+ T cells in murine intestinal epithelium. Eur. J. Immunol 1990; 20: 1623
  • Lefrancois L., Goodman T. In vivo, modulation of cytolytic activity and Thy-1 expression in TCR-γδ+ intraepithelial lymphocytes. Science 1989; 243: 1716
  • Taguchi T., McGehee J. R., Coffman R. L., Beagley K. W., Eldridge J. H., Takatsu K., Kiyono H. Analysis of Th1 and Th2 cells in murine gut-associated tissues. Frequencies of CD4+ and CD8+ T cells that secrete IFN-γ and IL-5. J. Immunol 1990; 145: 68
  • Taguchi T., Aicher W. K., Fujihashi K., Yamamoto M., McGhee J., Bluestone J. A., Kiyono H. Novel function for intestinal intraepithelial lymphocytes. Murine CD3+, γ/δ TCR+ T cells produce IFN-γ and IL-5. J. Immunol 1991; 147: 3736
  • Yamamoto M., Fujihashi K., Beagley K. W., McGhee J. R., Kiyono H. Cytokine synthesis by intraepithelial lymphocytes. Both γ/δ T cell receptor-positive and α/β T cell receptor-positive T cells in the G1 phase of cell cycle produce IFN-γ and IL-5. J. Immunol 1993; 150: 106
  • Barrett T. A., Gajewski T. F., Danielpour D., Chang, Eugen B., Beagley K. W., Bluestone J. A. Differential function of intestinal intraepithelial lymphocyte subset. J. Immunol 1992; 149: 1124
  • Offit P. A., Dudzik K. I. Rotavirus-specific cytotoxic T lymphocytes appear at the intestinal mucosal surface after rotavirus infection. J. Virol 1989; 63: 3507
  • Roberts A. I., O'Connell S., Ebert S. C. Intestinal intraepithelial lymphocytes bind to colon cancer cells by HML-1 and CDI1a. Cancer Res 1993; 53: 1608
  • Jarry A., Cerf-Bensussan N., Brousse N., Guy-Grand D., Muzeau E., Potet F. Same peculiar subset of HML1+ lymphocytes present within normal intestinal epithelium is associated with tumoral epithelium of gastrointestinal carcinomas. Gut 1988; 29: 1632
  • Yamamoto S., Russ F., Teixeira H. C., Conradt P., Kaufmann S. H. E. Listeria monocytogenes,-induced gamma interferon secretion by intestinal intraepithelial γ/δ T lymphocytes. Infect. Immun 1993; 61: 2154
  • Ebert E. C. Proliferative responses of human intraepithelial lymphocytes to various T-cell stimuli. Gastroenterol 1989; 97: 1372
  • Mowat Mel A., MacKenzie S., Baca M. E., Felstein M. V., Parrott D. M. V. Functional characteristics of intestinal intraepithelial lymphocytes from mouse small intestine. II. In vivo, and in vitro, responses of intraepithelial lymphocytes to mitogenic and allogeneic stimuli. Immunology 1986; 58: 627
  • Mowat Mel A., McLnnes I. B., Parrott D. M. V. Functional properties of intraepithelial lymphocytes from mouse small intestine IV. investigation of the proliferative capacity of IEL using phorbol ester and calcium ionophore. Immunology 1989; 66: 398
  • Gramzinski R. A., Adams E., Gross J. A., Goodman T. G., Allison J. R., Lefrancois L. T cell receptor-triggered activation of intraepithelial lymphocytes. Int. Immunol 1993; 2: 145

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.