15
Views
50
CrossRef citations to date
0
Altmetric
Original Article

Extrathymic Pathways of T-cell Differentiation in the Liver and Other Organs

, , , , , , , , , & show all
Pages 61-102 | Received 30 Sep 1993, Published online: 10 Jul 2009

References

  • Finkel T. H., Cambier J. C., Kubo R. T., Born W. K., Marrack R., Kappler J. W. The thymus has two functionally distinct populations of immature aβ+ T cells: one population is deleted by ligation of αβ TCR. Cell 1989; 58: 1047–1054
  • Kisielow R., Blüthmann H., Staerz U. D., Steimetz M., von Boehmer H. Tolerance in T-cell receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 1988; 333: 742–746
  • Smith C. A., Williams G. T., Kingston R., Jenkinson E. J., Owen J. J. T. Antibodies CD3/T-cell receptor complex induce death by apoptosis in immature T cells in thymic cultures. Nature 1989; 337: 181–184
  • Teh H. S., Kisielow R., Scott B., Kishi H., Uematsu Y., Blüthmann H., von Boehmer H. Thymic major histocompatibility complex antigens and the αβ T-cell receptor determine the CD4/CD8 phenotype of T cells. Nature 1988; 335: 229–233
  • Ohteki T., Seki S., Abo T., Kumagai K. Liver is a possible site for the proliferation of abnormal CD3+4−8− double-negative lymphocytes in autoimmune MRL-lpr/lpr, mice. J. Exp. Med 1990; 172.: 7–12
  • Seki S., Abo T., Masuda T., Ohteki T., Kanno A., Takeda K., Rikiishi H., Nagura H., Kumagai K. Identification of activated T cell receptor γδ lymphocytes in the liver of tumor-bearing hosts. J. Clin. Invest 1990; 86: 409–415
  • Ohteki T., Abo T., Seki S., Kobata T., Yagita, Okumura H. K., Kumagai K. Predominant appearance of γδ T lymphocytes in the liver of mice after birth. Eur. J. Immunol 1991; 21: 1733–1740
  • Abo T., Ohteki T., Seki S., Koyamada N., Yoshikai Y., Masuda T., Rikiishi H., Kumagai K. Generation of forbidden T cell oligoclones in the liver of mice injected with bacteria. J. Exp. Med 1991; 174: 417–424
  • Seki S., Abo T., Ohteki T., Sugiura K., Kumagai K. Unusual αβ-T cells expanded in autoimmune lpr, mice are probably a counterpart of normal T cells in the liver. J. Immunol 1991; 147: 1214–1221
  • Seki S., Abo T., Sugiura K., Ohteki T., Kobata T., Yagita H., Okumura K., Rikiishi H., Masuda T., Kumagai K. Reciprocal T cell responses in the liver and thymus of mice injected with syngeneic tumor cells. Cell. Immunol 1991; 137: 46–60
  • Masuda T., Ohteki T., Abo T., Seki S., Nose M., Nagura H., Kumagai K. Expansion of double negative CD4−8− αβ T cells in the liver is a common feature of autoimmune mice. J. Immunol 1991; 147: 2907–2912
  • Ferguson A., Parrott D. M. V. The effect of antigen deprivation on thymus-dependent and thymus-independent lymphocytes in the small intestine of the mouse. Clin. Exp. Immunol 1972; 12: 477–488
  • Mosley R. L., Styre D., Klein J. R. Differentiation and functional maturation of bone marrow-derived intestinal epithelial T cells expressing membrane T cell receptor in athymic radiation chimeras. J. Immunol 1990; 145: 1369–1375
  • De Geus B., Van den Enden M., Coolen C., Nagelkerken L., Van den Heijden P., Rozing J. Phenotype of intraepithelial lymphocytes in euthymic and athymic mice: implications for differentiation of cells bearing a CD3-associated γδ T cell receptor. Eur. J. Immunol 1990; 20: 291–298
  • Ebert E. C. Intra-epithelial lymphocytes: interferon-gamma production and suppressor/cytotoxic activities. Clin. Exp. Immunol 1990; 82: 81–85
  • Mosley R. L., Styre D., Klein J. R. CD4+CD8+ murine intestinal intraepithelial lymphocytes. Int. Immunol 1990; 2: 361–365
  • Bandeira A., Itohara S., Bonneville M., Burlen-Defranoux O., Mota-Santos T., Coutinho A., Tonegawa S. Extrathymic origin of intestinal intraepithelial lymphocytes bearing T-cell antigen receptor γδ. Proc. Natl. Acad. Sci. USA 1991; 88: 43–47
  • Guy-Grand D., Cerf-Bensussan N., Malissen B., Malassis-Seris M., Briottet C., Vassalli P. Two gut intraepithelial CD8+ lymphocyte populations with different T cell receptors. A role for the gut epithelium in T cell differentiation. J. Exp. Med 1991; 173: 471–481
  • Guy-Grand D., Malassis-Seris M., Briottet C., Vassalli R. Cytotoxic differentiation of mouse gut thymodependent and independent intraepithelial T lymphocytes is induced locally. Correlation between functional assays, presence of perforin and granzyme transcripts, and cytoplasmic granules. J. Exp. Med 1991; 173: 1549–1552
  • Rocha B., Vassalli R., Guy-Grand D. The Vβ repertoire of mouse gut homodimeric α CD8+ intraepithelial T cell receptor α/β+ lymphocytes reveals a major extrathymic pathway of T cell differentiation. J. Exp. Med 1991; 173: 483–486
  • Abo T., Watanabe H., Sekikawa H. Multiplicity of sites for extrathymic T-cell differentiation. Acta Medica Biol 1993; 41: 59–79
  • Saito S., Nishikawa K., Morii T., Enomoto M., Narita N., Motoyoshi K., Ichijo M. Cytokine production by CD16-CD56bright natural killer cells in the human early pregnancy decidua. Int. Immunol 1993; 5: 559–563
  • Ishikawa H., Saito K. Congenitally athymic nude (nu/nu,) mice have Thy-1-bearing immunocompetent helper T cells in their peritoneal cavity. J. Exp. Med 1980; 151: 965–968
  • Andreu-Sanchez J. I-, de Alborán I. M., Marcos M. A. R., Sánchez-Movilla A., Martínez -A C., Kroemer G. Interleukin 2 abrogates the nonresponsive state of T cells expressing a forbidden T cell receptor repertoire and induces autoimmune disease in neonatally thymectomized mice. J. Exp. Med 1991; 173: 1323–1329
  • Ohteki T., Okuyama R., Seki S., Abo T., Sugiura K., Kusumi A., Ohmori T., Watanabe H., Kumagai K. Age-dependent increase of extrathymic T cells in the liver and their appearance in the periphery of older mice. J. Immunol 1992; 149: 1562–1570
  • Iiai T., Watanabe H., Seki S., Sugiura K., Hirokawa K., Utsuyama M., Takahashi-Iwanaga H., Iwanaga T., Ohteki T., Abo T. Ontogeny and development of extrathymic T cells in mouse liver. Immunology 1992; 77: 556–563
  • Taylor L. D., Daniels C. K., Schmucker D. L. Ageing compromises gastrointestinal mucosal immune response in the rhesus monkey. Immunology 1992; 75: 614–618
  • Takimoto H., Nakamura T., Takeuchi M., Sumi Y., Tanaka T., Nomoto K., Yoshikai Y. Age-associated increase in number of CD4+CD8+ intestinal intraepithelial lymphocytes in rats. Eur. J. Immunol 1992; 22: 159–164
  • Ohtsuka K., Iiai T., Watanabe H., Tanaka T., Miyasaka M., Sato K., Asakura H., Abo T. Similarities and differences between extrathymic T cells residing in mouse liver and intestine. Cell. Immunol, in press
  • Okuyama R., Abo T., Seki S., Ohteki T., Sugiura K., Kusumi A., Kumagai K. Estrogen administration activates extrathymic T cell differentiation in the liver. J. Exp. Med 1992; 175: 661–669
  • Abo T. Extrathymic differentiation of T lymphocytes and its biological function. Biomed. Res 1992; 13: 1–39
  • Abo T. Extrathymic pathways of T-cell differentiation. A primitive and fundamental immune system. Microbiol. Immunol 1993; 37: 247–258
  • Kimura M., Watanabe H., Ohtsuka K., Iiai T., Tsuchida M., Sato S., Abo T. Radioresistance of intermediate TCR cells and their localization in the body of mice revealed by irradiation. Microbiol. Immunol 1993; 37: 641–652
  • Tsuchida M., Iiai T., Watanabe H., Abo T. Relative resistance of intermediate TCR cells to anti-CD3 mAb in mice in vivo, and their partial functional characterization. Cell. Immunol 1992; 145: 78–90
  • Fowlkes B. J., Kruisbeek A. M., Ton-That H., Weston M. A., Coligan J. E., Schwartz R. H, Pardoll D. M. A novel population of T-cell receptor αβ-bearing thymocytes which predominantly expresses a single Vβ gene family. Nature 1987; 329: 251–254
  • Pearse M., Gallagher P., Wilson A., Wu L., Fisicaro N., Miller J. F. A. R., Scollay R., Shortman K. Molecular characterization of T-cell antigen receptor expression by subsets of CD4- CD8- murine thymocytes. Proc. Natl. Acad. Sci. USA 1988; 85: 6082–6086
  • Crispe I. N., Moore M. W., Husmann L. A., Smith L., Bevan M. T., Shimonkevitz R. P. Differentiation potential of subsets of CD4−8− thymocytes. Nature 1987; 329: 336–339
  • Guidos C. J., Weissman I. L., Adkins B. Developmental potential of CD4−8− thymocytes: peripheral progeny include mature CD4−8− T cells bearing αβ T cell receptor. J. Immunol 1989; 142: 3773–3780
  • Wisse E., Van't Noordende J. M., Van der Meulen J., Daems Th W. The pit cells: description of a new type of cell occurring in rat liver sinusoids and peripheral blood. Cell Tissue Res 1976; 173: 423–435
  • Kaneda K., Wake K. Distribution and morphological characteristics of the pit cells in the liver of the rat. Cell Tissue Res 1983; 233: 485–505
  • Kaneda K. Liver-associated large granular lymphocytes: morphological and functional aspects. Arch. Histol. Cytol 1989; 52: 447–459
  • Itoh H., Abo T., Sugawara S., Kanno A., Kumagai K. Age-related variation in the proportion and activity of murine liver natural killer cells and their cytotoxicity against regenerating hepatocytes. J. Immunol 1988; 141: 315–323
  • Wiltrout R. H., Pilaro A. M., Gruys M. E., Talmadge J. E., Longo D. L., Ortaldo J. R., Reynold C. W. Augmentation of mouse liver-associated natural killer activity by biologic response modifiers occurs largely via rapid recruitment of large granular lymphocytes from the bone marrow. J. Immunol 1989; 143: 372–378
  • Watanabe H., Iiai T., Kimura M., Ohtsuka K., Tanaka T., Miyasaka M., Tsuchida M., Hanawa H., Abo T. Characterization of intermediate TCR cells in the liver of mice with respect to their unique IL-2R expression. Cell. Immunol 1993; 149: 331–342
  • Goossens P. L., Jouin H., Marchal G., Milon G. Isolation and flow cytometric analysis of the free lymphomyeloid cells present in murine liver. J. Immunol. Methods 1990; 132: 137–144
  • Murosaki S., Yoshikai Y., Ishida A., Nakamura T., Matsuzaki G., Takimoto H., Yuuki H., Nomoto K. Failure of T cell receptor Vβ negative selection in murine intestinal intra-epithelial lymphocytes. Int. Immunol 1991; 3: 1005–1013
  • Hünig T. T-cell function and specificity in athymic mice. Immunol, today 1983; 4: 84–87
  • MacDonald H. R. Phenotypic and functional characteristics of “T-like” cells in nude mice. Exp. Cell. Biol 1984; 52: 2–6
  • Kishihara K., Yoshikai Y., Matsuzaki G., Mak T. W., Nomoto K. Functional α and β T cell chain receptor messages can be detected in old but not young athymic mice. Eur. J. Immunol 1987; 17: 477–482
  • MacDonald H. R., Lees R. K., Bron C., Sordat B., Miescher G. T-cell antigen receptor expression in athymic (nu/nu), mice. Evidence for an oligoclonal β chain repertoire. J. Exp. Med 1987; 166: 195–209
  • Hodes R. J., Sharrow S. O., Solomon A. Failure of T cell receptor Vβ negative selection in an athymic environment. Science 1989; 246: 1041–1044
  • Fry A. M., Jones L. A., Kruisbeek A. M., Matis L. A. Thymic requirement for clonal deletion during T cell development. Science 1989; 246: 1044–1046
  • Rocha B. Characterization of Vβ-bearing cells in athymic (nu/nu) mice suggests an extrathymic pathway for T cell differentiation. Eur. J. Immunol 1990; 20: 919–925
  • Lake J. P., Pierce C. W., Kennedy J. D. T cell receptor expression by T cells that mature extrathymically in nude mice. Cell. Immunol 1991; 135: 259–265
  • Kimura M., Watanabe H., Abo T. Selective activation of extrathymic T cells in the liver by glycyrrhizin. Biotherapy 1992; 5: 167–176
  • Watanabe H., Ohtsuka K., Kimura M., Ikarashi Y., Ohmori T., Kusumi A., Ohteki T., Seki S., Abo T. Details of an isolation method for hepatic lymphocytes in mice. J. Immunol. Methods 1992; 146: 145–154
  • Croitoru K., Stead R. H., Bienenstock J., Fulop G., Harnish D. G., Shultz L. D., Jeffery P. K., Ernst P. B. Presence of intestinal intraepithelial lymphocytes in mice with severe combined immunodeficiency disease. Eur. J. Immunol 1990; 20: 645–651
  • Guy-Grand D., Griscelli C., Vassalli P. The mouse gut T lymphocyte, a novel type of T cell. Nature, origin, and traffic in mice in normal and graft-versus-host condition. J. Exp. Med 1978; 148: 1664–1677
  • Guy-Grand D., Griscelli C., Vassalli R. The gut-associated lymphoid system: nature and properties of the large dividing cells. Eur. J. Immunol 1974; 4: 435–443
  • Poussier P., Edouard P., Lee C. Binnie, M., and Julius, M. Thymus-independent development and nagative selection of T cells expressing T cell receptor α/β in the intestinal epithelium: evidence for distinct circulation patterns of gut- and thymus-derived T lymphocytes. J. Exp. Med 1992; 176: 187–199
  • Fangmann J., Schwinzer R., Wonigeit K. Unusual phenotype of intestinal intraepithelial lymphocytes in the rat: predominance of T cell receptor α/β+/CD2− cells and high expression of the RT6 alloantigen. Eur. J. Immunol 1991; 21: 753–760
  • Taguchi T., Aicher W. K., Fujihashi K., Yamamoto M., McGhee J. R., Bluestone J. A., Kiyono H. Novel function for intestinal intraepithelial lymphocytes. Murine CD3+, γ/δ TCR+ T cells produce IFN-γ and IL-5. J. Immunol 1991; 147: 3736–3744
  • Deusch K., Lüling E., Reich K., Classen M., Wagner H., Pfeffer K. A major fraction of human intraepithelial lymphocytes simultaneously expresses the γ/δ T cell receptor, the CD8 accessory molecule and preferentially uses the V81 gene segment. Eur. J. Immunol 1991; 21: 1053–1059
  • Jarry A., Cerf-Bensussan N., Brousse N., Selz F., Guy-Grand D. Subsets of CD3+ (T cell receptor α/β or γ/δ) and CD3− lymphocytes isolated from normal human gut epithelium display phenotypical features different from their counterparts in peripheral blood. Eur. J. Immunol 1990; 20: 1097–1103
  • Maloy K. J., Mowat A. M., Zamoyska R., Crispe I. N. Phenotypic heterogeneity of intraepithelial T lymphocytes from mouse small intestine. Immunology 1991; 72: 555–562
  • Ebert E. C. Proliferative responses of human intraepithelial lymphocytes to various T-cell stimuli. Gastroenterology 1989; 97: 1372–1381
  • Harriman G. R., Hörnqvist E., Lycke N. Y. Antigen-specific and polyclonal CD4+ lamina propria T-cell lines:phenotypic and functional characterization. Immunology 1992; 75: 66–73
  • Arase H., Arase N., Ogasawara K., Good R. A., Onoe K. An NK1.1+CD4+8− single-positive thymocyte subpopulation that expresses a highly skewed T-cell antigen receptor Vβ family. Proc. Natl. Acad. Sci. USA 1992; 89: 6506–6510
  • Arase H., Arase-Fukushi N., Good R. A., Onoe K. Lymphokine-activated killer cell activity of CD4−CD8− TCRαβ+ thymocytes. J. Immunol 1993; 151.: 546–555
  • Arase H., Arase N., Nakagawa K., Good R. A., Onoe K. NK1.1+ CD4+CD8− thymocytes with specific lymphokine secretion. Eur. Immunol J 1993; 23: 307–310
  • Kikly K., Dennert G. Evidence for extrathymic development of TNK cells. NK1+CD3+ cells responsible for acute marrow graft rejection are present in thymus-deficient mice. J. Immunol 1992; 149: 403–412
  • Mieno M., Suto R., Obata Y., Udono H., Takahashi T., Shiku H., Nakayama E. CD4−8− T cell receptor αβ T cells: Generation of an in vitro, major histocompatibility complex class I specific cytotoxic T lymphocyte response and allogeneic tumor rejection. J. Exp. Med 1991; 174: 193–201
  • Budd R. C., Miescher G. C., How R. C., Lees R. K., Bron C., MacDonald H. R. Developmentally regulated expression of T cell receptor β chain variable domains in immature thymocytes. J. Exp. Med 1987; 166: 577–582
  • Egerton M., Scollay R. Intrathymic selection of murine TCR αβ+CD4+CD8− thymocytes. Int. Immunol 1989; 2: 157–162
  • Takahama Y., Kosugi A., Singer A. Phenotype, ontogeny, and repertoire of CD4−CD8− T cell receptor αβ+ thymocytes. Variable influence of self-antigens of T cell receptor Vβ usage. J. Immunol 1991; 146.: 1134–1141
  • Suda T., Zlotnik A. Origin, differentiation, and repertoire selection of CD3+CD4−CD8− thymocytes bearing either αβ or γδ T cell receptors. J. Immunol 1993; 150.: 447–455
  • Wu L., Pearse M., Egerton M., Petrie H., Scollay R. CD4−CD8− thymocytes that express the T cell receptor may have previously expressed CD8. Int. Immunol 1990; 2: 51–56
  • Papiernik M., Pontoux C. In vivo, and in vitro, repertoire of CD3+CD4−CD8− thymocytes. Int. Immunol 1990; 2: 407–412
  • Levitsky H. I., Golumbek P. T., Pardoll D. M. The fate of CD4−8− T cell receptor-αβ+ thymocytes. J. Immunol 1991; 146: 1113–1117
  • Wilson A., Ewing T., Owens T., Scollay R., Shortman K. T cell antigen receptor expression by subsets of Ly-2−L3T4− (CD8−CD4−) thymocytes. J. Immunol 1988; 140.: 1470–1476
  • Goff L. K., Huby R. D. J. Characterization of constitutive and strain-dependent subsets of CD45RA+ cells in the thymus. Int. Immunol 1992; 4: 1303–1311
  • Zlotnik A., Godfrey D. I., Fischer M., Suda T. Cytokine production by mature and immature CD4−CD8− T cells. αβ-T cell receptor+CD4−CD8− T cells produce IL-4. J. Immunol 1992; 149.: 1211–1215
  • Skinner M. A., Sambhara S. R., Benveniste R., Miller R. G. Characterization of αβ+ CD4−CD8− CTL lines isolated from mixed lymphocyte cultures of adult mouse spleen cells. Cell. Immunol 1992; 139.: 375–385
  • Reimann J., Bellan A., Conradt P. Development of autoreactive L3T4+ T cells from double-negative (L3T4−/Ly-2−) Thy-1+ spleen cells of normal mice. Eur. J. Immunol 1988; 18: 989–999
  • Prud'Homme G. J., Bocarro D. C., Luke E. C. H. Clonal deletion and autoreactivity in extrathymic CD4−CD8− (double negative) T cell receptor-α/β T cells. J. Immunol 1991; 147: 3314–3318
  • Huang L., Crispe I. N. Distinctive selection mechanisms govern the T cell receptor repertoire of peripheral CD4−CD8- α/β T cells. J. Exp. Med 1992; 176: 699–706
  • Palathumpat V., Jones D. S., Holm B., Wang H., Liang O., Strober S. Studies of CD4−CD8− αβ bone marrow T cells with suppressor activity. J. Immunol 1992; 148: 373–380
  • von Boehmer H., Kirberg J., Rocha B. An unusual lineage of α/β T cells that contains autoreactive cells. J. Exp. Med 1991; 174: 1001–1008
  • Russell J. H., Meleedy-Rey R., McCulley D. E., Sha W. C., Nelson C. A., Loh D. Y. Evidence for CD8-independent T cell maturation in transgenic mice. J. Immunol 1990; 144: 3318–3325
  • Cordier A. C., Haumont S. M. Development of thymus, parathyroids and ultimo-branchial bodies in NMRI and nude mice. Am. J. Anat 1980; 157: 227–263
  • Lefrancois L., Goodman T. In vivo modulation of cytotoxic activity and Thy-1 expression in TCR-γδ+ intraepithelial lymphocytes. Science 1989; 243: 1716–1718
  • Habu S., Kasai M., Nagai Y., Tamaoki N., Tada T., Herzenberg L. A., Okumura K. The glycolipid asialo GM1 as a new differentiation antigen of fetal thymocytes. J. Immunol 1980; 125: 2284–2288
  • Rodewald H. -R., Moingeon R., Lucich J. L., Dosiou C., Lopez R., Reinherz E. L. A population of early thymocytes expressing FCγRII/III contains precursors of T lymphocytes and natural killer cells. Cell 1992; 69: 139–150
  • Ceredig R., Lowenthal J. W., Nabholz M., MacDonald H. R. Expression of interleukin-2 receptors as a differentiation marker on intrathymic stem cells. Nature 1985; 314: 98–100
  • Pearse M., Wu L., Egerton M., Wilson A., Shortman K., Scollay R. A murine early thymocyte developmental sequence is marked by transient expression of the interleukin 2 receptor. Proc. Natl. Acad. Sci. USA 1989; 86: 1614–1618
  • Raulet D. H., Garman R. D., Saito H., Tonegawa S. Developmental regulation of T-cell receptor gene expression. Nature 1985; 314: 103–107
  • Havran W. L., Allison J. P. Developmentally ordered appearance of thymocytes expressing different T-cell antigen receptors. Nature 1988; 335: 443–445
  • Iwashima M., Davis M. M., Chien Y. -H. A γ/δ T cell receptor heterodimer induces the expression of CD4 and CD8 in thymocytes. J. Exp. Med 1991; 174: 293–296
  • Elbe A., Kilgus O., Strohal R., Payer E., Schreiber S., Stingl G. Fetal skin: A site of dendritic epidermal T cell development. J. Immunol 1992; 149: 1694–1701
  • Itohara S., Nakanishi H., Kanagawa Q., Kubo R., Tonegawa S. Monoclonal antibodies specific to native murine T-cell receptor γδ: analysis of γδ T cells during thymic ontogeny and in peripheral lymphoid organs. Proc. Natl. Acad. Sci. USA 1989; 86: 5094–5098
  • Heyborne K. D., Cranfill R. L., Carding S. R., Born W. K., O'brien R. L. Characterization of γδ T lymphocytes at the maternal-fetal interface. J. Immunol 1992; 149: 2872–2878
  • Ito K., Bonneville M., Takagaki Y., Nakanishi N., Kanagawa O., Krecko E. G., Tonegawa S. Different γδ T-cell receptors are expressed on thymocytes at different stages of development. Proc. Natl. Acad. Sci. USA 1989; 86: 631–635
  • Allison J. P., Havran W. L. The immunobiology of T cells with invariant γδ antigen receptors. Annu. Rev. Immunol 1991; 9: 679–705
  • Sato K., Ohtsuka K., Watanabe H., Asakura H., Abo T. Detailed characterization of γδ T cells within the organs in mice: classification into three groups. Immunology, in press
  • Naito M., Takahashi K. The role of Kupffer cells in Glucan-induced granuloma formation in the liver of mice depleted of blood monocytes by administration of strontium-89. Lab. Invest 1991; 64: 664–674
  • Kusumi A., Abo T., Masuda T., Sugiura K., Seki S., Ohteki T., Okuyama R., Kumagai K. Lymphotoxin activates hepatic T cells and simultaneously induces profound thymic atrophy. Immunology 1992; 77: 177–184
  • Hirahara H., Ogawa M., Kimura M., Iiai T., Tsuchida M., Hanawa H., Watanabe H., Abo T. Glucocorticoid-independence of acute thymic involution induced by lymphotoxin and estrogen. Cell. Immunol, in press
  • Mabuchi A., Komuro T., Saizawa T., Sakamoto T., Watari E., Yokomuro K. The liver and the hematolymphoid system: The I. regulation of nylonpassed spleen cell proliferation by active factors released from syngenic nonparenchymal liver cells. Leuk J. Biol 1991; 50: 402–411
  • Matsuguchi T., Okamura S., Kawasaki C., Niho Y. Production of interleukin 6 from human liver cell lines: production of interleukin 6 is not concurrent with the production of α-fetoprotein. Cancer Res 1990; 50: 7457–7459
  • Kutteh W. H., Rainey W. E., Carr B. R. Regulation of interleukin-6 production in human fetal Kupffer cells. Scand. J. Immunol 1991; 33: 607–613
  • Riches P., Gooding R., Millar B. C., Rowbottom A. W. Influence of collection and separation of blood samples on plasma IL-1, IL-6 and TNF-α concentrations. J. Immunol. Methods 1992; 153: 125–131
  • Ehlers S., Mielke M. E. A., Blankenstein T., Hahn H. Kinetic analysis of cytokine gene expression in the livers of naive and immune mice infected with Listeria monocytogenes., The immediate early phase in innate resistance and acquired immunity. J. Immunol 1992; 149: 3016–3022
  • Endler-Jobst B., Schraven B., Hutmacher B., Meuer S. C. Human T cell responses to IL-1 and IL-6 are dependent on signals mediated through CD2. J. Immunol 1991; 46: 1736–1742
  • Riches P., Gooding R., Milar B. C., Rowbottom A. W. Influence of collection and separation of blood samples on plasma IL-1, IL-6 and TNF-α concentrations. J. Immunol. Methods 1992; 153: 125–131
  • Schindler R., Mancilla J., Endres S., Ghorbani R., Clark S. C., Dinarello C. A. Correlations and interactions in the production of interleukin-6 (IL-6), IL-1 and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppress IL-1 and TNE. Blood 1990; 75: 40–47
  • Colic M., Pejnovic N., Kataranovshi M., Stojanovic N., Terzic T., Dujic A. Rat thymic epithelial cells in culture constitutively secrete IL-1 and IL-6. Int. Immunol 1991; 11: 1165–1174
  • Le P. T., Lazorick S., Whichard L. P., Haynes B. E., Singer K. H. Regulation of cytokine production in the human thymus: epidermal growth factor and transforming growth factor α regulate mRNA levels of interleukin la (IL-1α), IL-1β and IL-6 in human thymic epithelial cells at a post-transcriptional level. J. Exp. Med 1991; 174: 1147–1157
  • Makino Y., Yamagata N., Sasho T., Adachi Y., Kanno R., Koseki H., Kanno M., Taniguchi M. Extrathymic development of Vα14-positive T cells. J. Exp. Med 1993; 177: 1399–1408
  • Watson J., Mochizuki D. Interleukin 2: A class of T cell growth factors. Immunol. Rev 1980; 51: 257–278
  • Tsudo M., Kitamura E., Miyasaka M. Characterization of the interleukin 2 receptor β chain using three distinct monoclonal antibodies. Proc. Natl. Acad. Sci. USA 1989; 86: 1982–1986
  • Bluestone J. A., Cron R. Q., Cotterman M., Houlden B. A., Matis L. A. Structure and specificity of T cell receptor γ/δ on major histocompatibility complex antigen-specific CD3+, CD4−, CD8− T lymphocytes. J. Exp. Med 1988; 168: 1899–1916
  • Bonneville M., Ito K., Krecko E. G., Itohara S., Kappes D., Ishida I., Kanagawa O., Janeway C. A., Murphy D. B., Tonegawa S. Recognition of a self major histocompatibility complex TL region product by γδ T-cell receptors. Proc. Natl. Acad. Sci. USA 1989; 86: 5928–5932
  • Obata Y., Taguchi O., Matsudaira Y., Hasegawa H., Hamasima N., Takahashi T. Abnormal thymic development, impaired immune function and γδ T cell lymphomas in a TL transgenic mouse strain. J. Exp. Med 1991; 174: 351–362
  • Watanabe H., Ohtsuka K., Obata Y., Iiai T., Kimura M., Takahashi T., Hirokawa K., Utsuyama M., Abo T. Generalized expansion of extrathymic T cells in various immune organs of TL-transgenic mice. Biomed. Res 1993; 14: 273–288
  • Hershberg R., Eghtesady R., Sydora B., Brorson K., Cheroutre H., Modlin R., Kronenberg M. Expression of the thymus leukemia antigen in mouse intestinal epithelium. Proc. Natl. Acad. Sci. USA 1990; 87: 9727–9731
  • Teitell M., Mescher M. E., Olson C. A., Littman D. R., Kronenberg M. The thymus leukemia antigen binds human and mouse CD8. Exp J. Med 1991; 174: 1131–1138
  • Chen Z. W., McAdam S. N., Hughes A. L., Dogon A. L., Letvin N. L., Watkins D. I. Molecular cloning of orangutan and gibbon MHC class I cDNA. The HLA-A and -B Loci diverged over 30 million years ago. J. Immunol 1992; 148: 2547–2554
  • Ulbrecht M., Honka T., Person S., Johnson J. R., Weiss E. H. The H LA-E gene encodes two differentially regulated transcripts and a cell surface protein. Immunol J 1992; 149: 2945–2953
  • Ishitani A., Geraghty D. E. Alternative splicing of HLA-G transcripts yields proteins with primary structures resembling both class I and class II antigens. Proc. Natl. Acad. Sci. USA 1992; 89: 3947–3951
  • Houlihan J. M., Biro P. A., Fergar-payne A., Simpson K. L., Holmes C. H. Evidence for the expression of non-HLA-A, -B, -C class I genes in the human fetal liver. J. Immunol 1992; 149: 668–675
  • Bleicher P. A., Balk S. R., Hagen S. I., Blumberg R. S., Flotte T. J., Terhorst C. Expression of murine CD1 on gastrointestinal epithelium. Science 1990; 250: 679–682
  • Porcelli S., Morita C. T., Brenner M. B. CD1b restricts the response of human CD4−8− T lymphocytes to a microbial antigen. Nature 1992; 360: 593–597
  • Huet S., Groux H., Caillou B., Valentin H., Prieur A. M., Bernard A. CD44 contributes to T cell activation. J. Immunol 1989; 143: 798–801
  • Culty M., Miyake K., Kincade P. W., Silorski E., Butcher E. C., Underhill C. The hyaluronate receptor is a member of the CD44 (H-CAM) family of cell surface glycoproteins. J. Cell Biol 1990; 111: 2765–2774
  • Webb D. S. A., Shimizu Y., Van Seventer G. A., Shaw S., Gerrard T. L. LFA-3, CD44, and CD45: Physiologic triggers of human monocyte TNF and IL-1 release. Science 1990; 250: 1295–1297
  • Sy M. S., Guo Y. -J., Stamenkovic I. Distinct effects of two CD44 isoforms on tumor growth in vivo. J. Exp. Med 1991; 174: 859–866
  • Lesley J., Hyman R. CD44 can be activated to function as an hyaluronic acid receptor in normal murine T cells. Eur. J. Immunol 1992; 22: 2719–2723
  • Lanier L. L., Ruitenberg J. J., Phillips J. H. Functional and biochemical analysis of CD16 antigen on natural killer cells and granulocytes. J. Immunol 1988; 141: 3478–3485
  • Edberg J. C., Barinsky M., Redecha P. B., Salmon J. E., Kimberly R. P. FcγRIII expressed on cultured monocytes is a N-glycosylated transmembrane protein distinct from FC7RIII expressed on natural killer cells. J. Immunol 1990; 144: 4729–4734
  • Hardy R. R., Hayakawa K., Shimizu M., Yamasaki K., Kishimoto T. Rheumatoid factor secretion from human Leu-1+ B cells. Science 1987; 236: 81–83
  • Hayakawa K., Hardy R. R., Parks D. R., Herzenberg L. A. The “Ly-1B” cell subpopulation in normal, immunodefective, and autoimmune mice. J. Exp. Med 1983; 157: 202–218
  • Herzenberg L. A., Stall A. M., Lalor P. A., Sidman C., Moore W. A., Parks D. R., Herzenberg L. A. The Ly-IB cell lineage. Immunol. Rev 1986; 93: 81–102
  • Ohteki T., Abo T., Kusumi A., Sasaki T., Shibata S., Seki S., Kumagai K. Age-associated increase of CD5+ B cells in the liver of autoimmune (NZB × NZW) F1 mice. Microbiol. Immunol 1993; 37: 221–228
  • Tsuchida M., Hashimoto S., Abo T., Miyamura H., Hirono T., Eguchi S. CD5+B cells in the thymus of patients with myasthenia gravis. Biomed. Res 1993; 14: 19–25
  • Datta S. K., Patel H., Berry D. Induction of a cationic shift in IgG anti-DNA autoantibodies. Role of T helper cells with classical and novel phenotypes in three murine modes of lupus nephritis. J. Exp. Med 1987; 165: 1252–1268
  • Sainis K., Datta S. K. CD4+ T cell lines with selective patterns of autoreactivity as well as CD4-CD8− T helper cell lines augment the production of idiotypes shared by pathogenic anti-DNA autoantibodies in the NZB × SWR model of lupus nephritis. Immunol J 1988; 140: 2215–2224
  • Abo T., Kusumi A., Seki S., Ohteki T., Sugiura K., Masuda T., Rikiishi H., Iiai T., Kumagai K. Activation of extrathymic T cells in the liver and reciprocal inactivation of intrathymic T cells by bacterial stimulation. Cell. Immunol 1992; 142: 125–136
  • Wyllie A. H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 1980; 284: 555–556
  • Selye H. A syndrome produced by diverse nocuous agents. Nature 1936; 138: 32
  • Dougherty T. F. Effect of hormones on lymphatic tissue. Physiol. Rev 1952; 32: 379–401
  • Ohmori K., Iiai T., Watanabe H., Tanaka T., Miyasaka M., Abo T. Activation of extrathymic T cells in the liver of mice bearing syngeneic tumors. Biomed. Res 1993; 14: 65–79
  • Iiai T., Watanabe H., Iwamoto T., Nakashima I., Abo T. Predominant activation of extrathymic T cells during melanoma development of metallothionein/ret, transgenic mice. Cell. Immunol, in press
  • Fu Y., Paul R. D., Wang Y., Lopez D. M. Thymic involution and thymocyte phenotypic alterations induced by murine mammary adenocarcinomas. J. Immunol 1989; 143: 4300–4307
  • Hanawa H., Tsuchida M., Matsumoto Y., Watanabe H., Abo T., Sekikawa H., Kodama M., Zhang S., Izumi T., Shibata A. Characterization of T cells infiltrating the heart in rats with experimental autoimmune myocarditis. Their similarity to extrathymic T cells in mice and the site of proliferation. J. Immunol 1993; 150: 5682–5695
  • Tsuchida M., Hanawa H., Hirahara H., Watanabe H., Matsumoto Y., Sekikawa H., Abo T. Identification of CD4−8− αβ T cells with extrathymic properties in the subarachnoid space of rats with experimental autoimmune encephalomyelitis. A possible route by which effector cells invade the lesions. Immunology, in press
  • Hercend T., Griffin J. D., Bensussan A., Schmidt R. E., Edson M. A., Brennan A., Murray C., Daley J. F., Schlossman S. F., Ritz J. Generation of monoclonal antibodies to a human natural killer clone: characterization of two natural killer-associated antigens, NKH1a and NKH2, expressed on subsets of large granular lymphocytes. J. Clin. Invest 1985; 75: 932–943
  • Lanier L. L., Le A. M., Civin C. I., Loken M. R., Phillips J. H. The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. Immunol J 1986; 136: 4480–4486
  • Abo T., Cooper M. D., Balch C. M. Characterization of HNK-1+ (Leu-7) human lymphocytes. I. Two distinct phenotypes of human NK cells with different cytotoxic capability. J. Immunol 1982; 129: 1752–1757
  • Abo T., Miller C. A., Balch C. M. Characterization of human granular lymphocyte subpopulations expressing HNK-1 (Leu-7) and Leu-11 antigens in the blood and lymphoid tissues from fetuses, neonates and adults. Eur. J. Immunol 1984; 14: 616–623
  • Loughran T. P., Jr. Clonal diseases of large granular lymphocytes. Blood 1993; 82: 1–14
  • Schmidt R. E., Murray C., Daley J. F., Schlossman S. F., Ritz J. A subset of natural killer cells in peripheral blood displays a mature T-cell phenotype. J. Exp. Med 1986; 164: 351–356
  • Phillips J. H., Lanier L. L. Lectin-dependent and anti-CD3 induced cytotoxicity are preferentially mediated by peripheral blood cytotoxic T lymphocytes expressing Leu-7 antigen. J. Immunol 1986; 136: 1579–1585
  • Hirokawa K. Autoimmunity and aging. Concepts Immunopathol 1985; 1: 251–288
  • Hayashi Y., Utsuyama M., Kurashima C., Hirokawa K. Spontaneous development of organ-specific autoimmune lesions in aged C57BL/6 mice. Clin. Exp. Immunol 1989; 78: 120–126
  • Newell K. A., Ellenhorn J. D. I., Bruce D. S., Bluestone J. A. In vivo, T-cell activation by staphylococcal enterotoxin B prevents outgrowth of a malignant tumor. Proc. Natl. Acad. Sci. USA 1991; 88: 1074–1078
  • Sato Y., Tsukada K., Iiai T., Ohmori K., Yoshida K., Muto T., Watanabe H., Matsumoto Y., Abo T. Activation of extrathymic T cells in the liver during liver regeneration following partial hepatectomy. Immunology 1993; 78: 86–91
  • Hunt J. S., Fishback J. L., Andrews G. K., Wood G. W. Expression of class I HLA genes by trophoblast cells. Analysis by in situ, hybridization. J. Immunol 1988; 140: 1293–1299
  • Geraghty D. E., Roller B. H., Orr H. T. A human major histocompatibility complex class I gene that encodes a protein with a shortened cytoplasmic segment. Proc. Natl. Acad. Sci. USA 1987; 84: 9145–9149
  • Wei X., Orr H. T. Differential expression of HLA-E, HLA-F, and HLA-G transcripts in human tissue. Human Immunol 1990; 29: 131–142
  • Kovats S., Main E. K., Librach C., Stubblebine M., Fisher S. J., DeMars R. A class I antigen, HLA-G, expressed in human trophoblasts. Science 1990; 248: 220–223
  • Yelavarthi K. K., Fishback J. L., Hunt J. S. Analysis of HLA-G mRNA in human placental and extraplacental membrane cells by in situ, hybridization. J. Immunol 1991; 146: 2847–2854
  • Schwemmle S., Bevec D., Brem G., Urban M. B., Baeuerle P. A., Weiss E. H. Developmental and tissue-specific expression of the Q5k gene. Immunogenetics 1991; 34: 28–38
  • Heyborne K. D., Cranfill R. L., Carding S. R., Born W. K., O'brien R. L. Characterization of γδ T lymphocytes at the maternal-fetal interface. J. Immunol 1992; 149: 2872–2878
  • Saito S., Nishikawa K., Morii T., Enomoto M., Narita N., Motoyoshi K., Ichijo M. Cytokine production by CD16-CD56bright natural killer cells in the human early pregnancy decidua. Int. Immunol 1993; 5: 559–563
  • Koyamada N., Ohteki T., Abo T., Fukumori T., Ohkouchi N., Satomi S., Xaguchi Y., Kusumi A., Mori S., Kumagai K. Induction of specific tolerance by hepatic double-negative CD4–8− αβ T cells of mice immunized with allogeneic cells via the portal vein. Cell. Immunol 1993; 149: 107–116

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.