37
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Human B Cell Biology

Pages 243-264 | Received 15 Nov 1996, Published online: 10 Jul 2009

References

  • Kirsch I. R., Morton C. C., Nakahara K., Leder P. Human immunoglobulin heavy chain genes map to a region of translocations in malignant B lymphocytes. Science 1982; 216: 301
  • Sakano H., Kurosawa Y., Weigert M., Tonegawa S. Identification and nucleotide sequence of a diversity DNA segment (D) of immunoglobulin heavy-chain genes. Nature 1981; 290: 562
  • Ichihara Y., Matsuoka H., Kurosawa Y. Organization of human immunoglobulin heavy chain diversity gene loci. EMBO J. 1988; 7: 4141
  • Buluwela L., Albertson D. G., Sherrington P., Rabbitts P. H., Spurr N., Rabbitts T. H. The use of chromosomal translocations to study human immunoglobulin gene organization: mapping DH segments within 35 kb of the C mu gene and identification of a new DH locus. EMBO J. 1988; 7: 2003
  • Ravetch J. V., Siebenlist U., Korsmeyer S., Waldmann T., Leder P. Structure of the human immunoglobulin mu locus: characterization of embryonic and rearranged J and D genes. Cell 1981; 27: 583
  • Hieter P. A., Max E. E., Seidman J. G., Maizel J. V., Jr., Leder P. Cloned human and mouse kappa immunoglobulin constant and J region genes conserve homology in functional segments. Cell 1980; 22: 197
  • Pascual V., Capra J. D. Human immunoglobulin heavy-chain variable region genes: organization, polymorphism, and expression. Adv. Immunol. 1991; 49: 1
  • Schanfield M. S., van Loghem E. Human immunoglobulin allotypes. Handbook of Experimental Immunology - Genetics and Molecular Immunology, D. M. Weir, L. A. Herzenberg, C. Blackwell, L. Herzenberg. Blackwell Scientific Publications, Oxford 1986, 94.1
  • Williams R. C., Jr., Malone C. C., Solomon A. Conformational dependency of human IgG heavy chain-associated Gm allotypes. Mol. Immunol. 1993; 30: 341
  • Tomlinson I. M., Walter G., Marks J. D., Llewelyn M. B., Winter G. The repertoire of human germline VH sequences reveals about fifty groups of VH segments with different hypervariable loops. J. Mol. Biol. 1992; 227: 776
  • Sanz I., Kelly P., Williams C., Scholl S., Tucker P., Capra J. D. The smaller human VH gene families display remarkably little polymorphism. EMBO J. 1989; 8: 3741
  • Meek K., Eversole T., Capra J. D. Conservation of the most JH proximal Ig VH gene segment (VHVI) throughout primate evolution. J. Immunol. 1991; 146: 2434
  • Milner E. C., Hufnagle W. O., Glas A. M., Suzuki I., Alexander C. Polymorphism and utilization of human VH genes. Ann. N. Y. Acad. Sci. 1995; 764: 50
  • Sasso E. H., Johnson T., Kipps T. J. Expression of the Ig VH gene 51p1 is proportional to its germline gene copy number. J. Clin. Invest. 1996; 97: 2074
  • Malcolm S., Barton P., Murphy C., Ferguson-Smith M. A., Bentley D. L., Rabbitts T. H. Localization of human immunoglobulin kappa light chain variable region genes to the short arm of chromosome, 2 by in situ hybridization. Proc. Natl. Acad. Sci. USA 1982; 79: 4957
  • Zachau H. G. The human immunoglobulin kappa locus and some of its acrobatics. Biol. Chem. Hoppe-Seyler 1990; 371: 1
  • Moxley G., Gibbs R. S. Polymerase chain reaction-based genotyping for allotypic markers of immunoglobulin kappa shows allelic association of Km with kappa variable segment. Genomics. 1992; 13: 104
  • Pech M., Smola H., Pohlenz H. D., Straubinger B., Gerl R., Zachau H. G. A large section of the gene locus encoding human immunoglobulin variable regions of the kappa type is duplicated. J. Mol. Biol. 1985; 183: 291
  • Zachau H. G. The immunoglobulin kappa locus-or-what has been learned from looking closely at one-tenth of a percent of the human genome. Gene 1993; 135: 167
  • Huber C., Huber E., Lautner-Rieske A., Schable K. F., Zachau H. G. The human immunoglobulin kappa locus. Characterization of the partially duplicated L regions. Eur. J. Immunol. 1993; 23: 2860
  • Klobeck H. G., Bornkamm G. W., Combriato G., Mocikat R., Pohlenz H. D., Zachau H. G. Subgroup IV of human immunoglobulin K light chains is encoded by a single germline gene. Nucleic. Acids. Res. 1985; 13: 6515
  • Lautner-Rieske A., Huber C., Meindl A., Pargent W., Schable K. F., Thiebe R., Zocher I., Zachau H. G. The human immunoglobulin kappa locus. Characterization of the duplicated A regions. Eur. J. Immunol. 1992; 22: 1023
  • Cox J. P., Tomlinson I. M., Winter G. A directory of human germ-line V kappa segments reveals a strong bias in their usage. Eur. J. Immunol. 1994; 24: 827
  • Klein R., Zachau H. G. Expression and hypermutation of human immunoglobulin kappa genes. Ann. N. Y. Acad. Sci. 1995; 764: 74
  • Feeney A. J., Atkinson M. J., Cowan M. J., Escuro G., Lugo G. A defective Vk A2 allele in Navajos which may play a role in increased susceptibility to Haemophilus influenzae type b disease. J. Clin. Invest. 1996; 97: 2277
  • Mc Bride O. W., Hieter P. A., Hollis G. F., Swan D., Otey M. C., Leder P. Chromosomal location of human kappa and lambda immunoglobulin light chain constant region genes. J. Exp. Med. 1982; 155: 1480
  • Combriato G., Klobeck H. G. V lambda and J lambda-C lambda gene segments of the human immunoglobulin lambda light chain locus are separated by 14kb and rearrange by a deletion mechanism. Eur. J. Immunol. 1991; 21: 1513
  • Hess M., Hilschmann N., Rivat L., Rivat C., Ropartz C. Isotypes in human immunoglobulin lambda-chains. Nature New. Biol. 1971; 234: 58
  • Vasicek T. J., Leder P. Structure and expression of the human immunoglobulin lambda genes. J. Exp. Med. 1990; 172: 609
  • Ghanem N., Dariavach P., Bensmana M., Chibani J., Lefranc G., Lefranc M. P. Polymorphism of immunoglobulin lambda constant region genes in populations from France, Lebanon and Tunisia. Exp. Clin. Immunogenet. 1988; 5: 186
  • Dariavach P., Lefranc G., Lefranc M. P. Human immunoglobulin C lambda 6 gene encodes the Kern+Oz-lambda chain and C lambda 4 and C lambda 5 are pseudogenes. Proc. Natl. Acad. Sci. USA 1987; 84: 9074
  • Frippiat J. P., Williams S. C., Tomlinson I. M., Cook G. P., Cherif D., Le Paslier D., Collins J. E., Dunham I., Winter G., Lefranc M. P. Organization of the human immunoglobulin lambda light-chain locus on chromosome 22q11.2. Hum. Mol. Genet. 1995; 4: 983
  • Chuchana P., Blancher A., Brockly F., Alexandre D., Lefranc G., Lefranc M. P. Definition of the human immunoglobulin variable lambda (IGLV) gene subgroups. Eur. J. Immunol. 1990; 20: 1317
  • Williams S. C., Winter G. Cloning and sequencing of human immunoglobulin V lambda gene segments. Eur. J. Immunol. 1993; 23: 1456
  • Matsuda F., Shin E. K., Hirabayashi Y., Nagaoka H., Yoshida M. C., Zong S. Q., Honjo T. Organization of variable region segments of the human immunoglobulin heavy chain: duplication of the D5 cluster within the locus and interchromosomal translocation of variable region segments. EMBO J. 1990; 9: 2501
  • Tomlinson I. M., Cook G. P., Carter N. P., Elaswarapu R., Smith S., Walter G., Buluwela L., Rabbitts T. H., Winter G. Human immunoglobulin VH and D segments on chromosomes 15q 11.2 and 16p 11.2. Hum. Mol. Genet. 1994; 3: 853
  • Weichhold G. M., Lautner-Rieske A., Zachau H. G. Human immunoglobulin genes of the kappa type. The long-range map of an orphon V kappa gene region. Biol. Chem. Hoppe. Seyler. 1992; 373: 1159
  • Huber C., Thiebe R., Hameister H., Smola H., Lotscher E., Zachau H. G. A human immunoglobulin kappa orphon without sequence defects may be the product of a pericentric inversion. Nucleic Acids Res. 1990; 18: 3475
  • Borden P., Jaenichen R., Zachau H. G. Structural features of transposed human VK genes and implications for the mechanism of their transpositions. Nucleic Acids Res. 1990; 18: 2101
  • Lotscher E., Zimmer F. J., Klopstock T., Grzeschik K. H., Jaenichen R., Straubinger B., Zachau H. G. Localization, analysis and evolution of transposed human immunoglobulin V kappa genes. Gene 1988; 69: 215
  • Lotscher E., Siwka W., Zimmer F. J., Grummt F., Zachau H. G. Transposed human immunoglobulin V kappa gene regions carry clusters of conserved sequence elements. Gene 1988; 69: 225
  • Schatz D. G., Oettinger M. A., Schlissel M. S. V(D)J recombination: molecular biology and regulation. Annu. Rev. Immunol. 1992; 10: 359
  • Oettinger M. A., Schatz D. G., Gorka C., Baltimore D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 1990; 248: 1517
  • Mc Blane J. F., Van Gent D. C., Ramsden D. A., Romeo C., Cuomo C. A., Gellert M., Oettinger M. A. Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell 1995; 83: 387
  • Van Gent D. C., Ramsden D. A., Gellert M. The RAG-1 and RAG-2 proteins establish the 12/23 rule in V(D)J recombination. Cell 1996; 85: 107
  • Oettinger M. A., Stanger B., Schatz D. G., Glaser T., Call K., Housman D., Baltimore D. The recombination activating genes, RAG-1 and RAG-2, are on chromosome lip in humans and chromosome 2p in mice. Immunogenetics. 1992; 35: 97
  • Ichihara Y., Hirai M., Kurosawa Y. Sequence and chromosome assignment to 11p13-p12 of human RAG genes. Immunol. Lett. 1992; 33: 277
  • Kuhn-Hallek I., Sage D. R., Stein L., Groelle H., Fingeroth J. D. Expression of recombination activating genes (RAG-1 and RAG-2) in Epstein- Barr virus-bearing B cells see comments. Blood 1995; 85: 1289
  • Billips L. G., Nunez C. A., Bertrand F. E., Stankovic A. K., Gartland G. L., Burrows P. D., Cooper M. D. Immunoglobulin recombinase gene activity is modulated reciprocally by interleukin 7 and CD 19 in B cell progenitors. J. Exp. Med. 1995; 182: 973
  • Saeland S., Moreau I., Duvert V., Pandrau D., Bancherau J. In vitro growth and maturation of human B-cell precursors. Curr. Top. Microbiol. Immunol. 1992; 182: 85
  • Kubagawa H., Cooper M. D., Carroll A. J., Burrows P. D. Light-chain gene expression before heavy-chain gene rearrangement in pre-B cells transformed by Epstein-Barr virus. Proc. Natl. Acad. Sci. USA 1989; 86: 2356
  • Yancopoulos G. D., Alt F. W. Regulation of the assembly and expression of variable-region genes. Annu. Rev. Immunol. 1986; 4: 339
  • Desiderio S. V., Yancopoulos G. D., Paskind M., Thomas E., Boss M. A., Landau N., Alt F. W., Baltimore D. Insertion of N regions into heavy-chain genes is correlated with expression of terminal deoxytransferase in B cells. Nature 1984; 311: 752
  • Schroeder H. W. J., Mortari F., Shiokawa S., Kirkham P. M., Elgavish R. A., Bertrand F. E. Developmental regulation of the human antibody repertoire. Ann. N. Y. Acad. Sci. 1995; 764: 242
  • Graninger W. B., Goldman P. L., Morton C. C., O'Brien S. J., Korsmeyer S. J. The kappa-deleting element. Germline and rearranged, duplicated and dispersed forms. J. Exp. Med. 1988; 167: 488
  • Esser C., Radbruch A. Immunoglobulin class switching: molecular and cellular analysis. Annu. Rev. Immunol. 1990; 8: 717
  • Harriman W., Volk H., Defranoux N., Wabl M. Immunoglobulin class switch recombination. Annual Review of Immunology 1993; 11: 361
  • Irsch J., Irlenbusch S., Radl J., Burrows P. D., Cooper M. D., Radbruch A. H. Switch recombination in normal IgA1+ B lymphocytes. Proc. Natl. Acad. Sci. USA 1994; 91: 1323
  • Gascan H., Gauchat J. F., Aversa G., Van Vlasselaer P., De, Vries J. E. Anti-CD40 monoclonal antibodies or CD4+ T cell clones and IL-4 induce IgG4 and IgE switching in purified human B cells via different signaling pathways. J. Immunol. 1991; 147: 8
  • Aversa G., Punnonen J., Carballido J. M., Cocks B. G., De, Vries J. E. CD40 ligand-CD40 interaction in Ig isotype switching in mature and immature human B cells. Semin. Immunol. 1994; 6: 295
  • Gray D., Siepmann K., Wohlleben G. CD40 ligation in B cell activation, isotype switching and memory development. Semin. Immunol. 1994; 6: 303
  • Bonnefoy J. Y., Gauchat J. F., Life P., Graber P., Aubry J. P., Lecoanet-Henchoz S. Regulation of IgE synthesis by CD23/CD21 interaction. Int. Arch. Allergy. Immunol. 1995; 107: 40
  • Diaz-Sanchez D., Chegini S., Zhang K., Saxon A. CD58 (LFA-3) stimulation provides a signal for human isotype switching and IgE production distinct from CD40. J. Immunol. 1994; 153: 10
  • Gauchat J. F., Aversa G., Gascan H., De, Vries J. E. Modulation of IL-4 induced germline epsilon RNA synthesis in human B cells by tumor necrosis factor-alpha, anti-CD40 monoclonal antibodies or transforming growth factor-beta correlates with levels of IgE production. Int. Immunol. 1992; 4: 397
  • Briere F., Servet-Delprat C., Bridon J. M., Saint-Remy J. M., Banchereau J. Human interleukin 10 induces naive surface immunoglobulin D+ (sIgD+) B cells to secrete IgGl and IgG3. J. Exp. Med. 1994; 179: 757
  • Kimata H., Fujimoto M. Induction of IgA1 and IgA2 production in immature human fetal B cells and pre-B cells by vasoactive intestinal peptide. Blood 1995; 85: 2098
  • Tonegawa S. Antibody and T-cell receptors. JAMA. 1988; 259: 1845
  • Rajewsky K., Förster I., Cumano A. Evolutionary and somatic selection of the antibody repertoire in the mouse. Science 1987; 238: 1088
  • Varade W. S., Marin E., Kittelberger A. M., Insel R. A. Use of the most JH-proximal human Ig H chain V region gene, VH6, in the expressed immune repertoire. J. Immunol. 1993; 150: 4985
  • Insel R. A., Varade W. S. Bias in somatic hypermutation of human VH genes. Int. Immunol. 1994; 6: 1437
  • Chang B., Casali P. A sequence analysis of human germline Ig VH and VL genes. The CDRls of a major proportion of VH, but not VL, genes display a high inherent susceptibility to amino acid replacement. Ann. N. Y. Acad. Sci. 1995; 764: 170
  • Nunez C., Nishimoto N., Gartland G. L., Billips L. G., Burrows P. D., Kubagawa H., Cooper M. D. B cells are generated throughout life in humans. J. Immunol. 1996; 156: 866
  • Solvason N., Kearney J. F. The human fetal omentum: a site of B cell generation. J. Exp. Med. 1992; 175: 397
  • Bofill M., Janossy G., Janossa M., Burford G. D., Seymour G. J., Wernet P., Kelemen E. Human B cell development. II. Subpopulations in the human fetus. J. Immunol. 1985; 134: 1531
  • MacLennan I., Chan E. The dynamic relationship between B-cell populations in adults. Immunol. Today 1993; 14: 29
  • Duperray C., Boiron J. M., Boucheix C., Cantaloube J. F., Lavabre Bertrand T., Attal M., Brochier J., Maraninchi D., Bataille R., Klein B. The CD24 antigen discriminates between pre-B and B cells in human bone marrow. J. Immunol. 1990; 145: 3678
  • Melchers F., Karasuyama H., Haasner D., Bauer S., Kudo A., Sakaguchi N., Jameson B., Rolink A. The surrogate light chain in B-cell development. Immunol. Today 1993; 14: 60
  • Evans R. J., Hollis G. F. Genomic structure of the human Ig lambda 1 gene suggests that it may be expressed as an Ig lambda 14.1-like protein or as a canonical B cell Ig lambda light chain: implications for Ig lambda gene evolution. J. Exp. Med. 1991; 173: 305
  • Kerr W. G., Cooper M. D., Feng L., Burrows P. D., Hendershot L. M. Mu heavy chains can associate with a pseudo-light chain complex (psi L) in human pre-B cell lines. Int. Immunol. 1989; 1: 355
  • Nishimoto N., Kubagawa H., Ohno T., Gartland G. L., Stankovic A. K., Cooper M. D. Normal pre-B cells express a receptor complex of mu heavy chains and surrogate light-chain proteins. Proc. Natl. Acad. Sci USA 1991; 88: 6284
  • Lassoued K., Nunez C. A., Billips L., Kubagawa H., Monteiro R. C., Le Blen T. W., Cooper M. D. Expression of surrogate light chain receptors is restricted to a late stage in pre-B cell differentiation. Cell 1993; 73: 73
  • Schiff C., Bensmana M., Guglielmi P., Milili M., Lefranc M. P., Fougereau M. The immunoglobulin lambda-like gene cluster (14.1, 16.1 and F lambda 1) contains gene(s) selectively expressed in pre-B cells and is the human counterpart of the mouse lambda 5 gene. Int. Immunol. 1990; 2: 201
  • Bossy D., Milili M., Zucman J., Thomas G., Fougereau M., Schiff C. Organization and expression of the lambda-like genes that contribute to the mupsi light chain complex in human pre-B cells. Int. Immunol. 1991; 3: 1081
  • Tsubata T., Reth M. The products of pre-B cell-specific genes (lambda 5 and Vpre.B) and the immunoglobulin mu chain form a complex that is transported onto the cell surface. J. Exp. Med. 1990; 172: 973
  • Billips L. G., Lassoued K., Nunez C., Wang J., Kubagawa H., Gartland G. L., Burrows P. D., Cooper M. D. Human B-cell development. Ann. N. Y. Acad. Sci. 1995; 764: 1
  • Haas I. G. BiP - a heat shock protein involved in immunoglobulin chain assembly. Curr. Top. Microbiol. Immunol. 1991; 167: 71
  • Melnick J., Aviel S., Argon Y. The endoplasmic reticulum stress protein GRP94, in addition to BiP, associates with unassembled immunoglobulin chains. J. Biol. Chem. 1992; 267: 21303
  • Knittler M. R., Haas I. G. Interaction of BiP with newly synthesized immunoglobulin light chain molecules: cycles of sequential binding and release. EM BO J. 1992; 11: 1573
  • Cambier J. C., Campbell K. S. Membrane immunoglobulin and its accomplices: new lessons from an old receptor. FASEB. J. 1992; 6: 3207
  • Fearon D. T., Carter R. H. The CD19/CR2/TAPA-1 complex of B lymphocytes: linking natural to acquired immunity. Annu. Rev. Immunol. 1995; 13: 127
  • Gray D. Immunologic memory. Annu. Rev. Immunol. 1993; 11: 49
  • Virella G., Wang A. C. Biosynthesis, metabolism and biological properties of immunoglobulins. Immunol. Ser. 1993; 58: 91
  • Parker D. C. T cell-dependent B cell activation. Annu. Rev. Immunol. 1993; 11: 331
  • Liu Y. J., Joshua D. E., Williams G. T., Smith C. A., Gordon J., Mac Lennan I. C. Mechanism of antigen-driven selection in germinal centres. Nature 1989; 342: 929
  • Jacob J., Kelsoe G., Rajewsky K., Weiss U. Intraclonal generation of antibody mutants in germinal centres see comments. Nature 1991; 354: 389

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.