174
Views
95
CrossRef citations to date
0
Altmetric
Original Article

TGF-β: A Balancing Act

, &
Pages 553-580 | Received 24 Mar 1997, Published online: 10 Jul 2009

References

  • McCartney-Francis N. L., Wahl S. M. Transforming growth factor β: a matter of life and death. J. Leukoc. Biol. 1994; 55: 401–409
  • Roberts A. B., Sporn M. B. Transforming growth factor-β. The Molecular and Cellular Biology of Wound Repair Clark. Plenum Press, RAF New York 1996; 275–308
  • Lawrence D. A. Transforming growth factor-β: a general review. Eur. Cytokine Netw. 1996; 7: 363–374
  • Shah M., Foreman D. M., Ferguson M. W.J. Neutralisation of TGF-β1 and TGF-β2 or exogenous addition of TGF-β3 to cutaneous rat wounds reduces scarring. J. Cell Sci. 1995; 108: 15–17
  • Nunes I., Munger J. S., Harpel J. G., Nagano Y., Shapiro R. L., Gleizes P.-E., Rifkin D. B. Structure and activation of the large latent transforming growth factor-β complex. Intl. J. Obes. 1996; 20: S4–S8
  • Miyazono K., Ichijo H., Heldin C.-H. Transforming growth factor-β: latent forms, binding proteins and receptors. Growth Factors 1993; 8: 11–22
  • Grainger D. J., Kemp P. R., Liu A. C., Lawn R. M., Metcalfe J. C. Activation of transforming growth factor-β is inhibited in transgenic apolipoprotein(a) mice. Nature 1994; 370: 460–462
  • Grainger D. J., Kemp P. R., Metcalfe J. C., Liu A. C., Lawn R. M., Grace A. A., Williams N. R., Schofield P. M., Chauhan A. Active transforming growth factor β is depressed five fold in patients with coronary artery disease. Nature Med. 1995; 1: 74–79
  • Altman D. J., Schneider S. L., Thompson D. A., Cheng H. L., Tomasi T. B. A transforming growth factor-β2 (TGF-β2)-like immunosuppressive factor in amniotic fluid and localization of TGF-β2 mRNA in the pregnant uterus. J. Exp. Med. 1990; 172: 1391–1401
  • Schultz-Cherry S., Chen H., Mosher D. F., Misenheimer T. M., Krutzch H. C., Roberts D. D., Murphy-Ulrich J. E. Regulation of transforming growth factor-beta activation by discrete sequences of thrombospondin 1. J. Biol. Chem. 1995; 270: 7304–7310
  • Kim S.-J., Romeo D., Yoo Y. D., Park K. Transforming growth factor-β expression in normal and pathological conditions. Harm. Res. 1994; 42: 5–8
  • Yoo Y. D., Ueda H., Park K., Flanders K. C., Lee Y. I., Jay G., Kim S.-J. Regulation of transforming growth factor-β1 expression by the hepatitis B virus (HBV) X transactivator. J. Clin. Invest. 1996; 97: 388–395
  • Yoo Y. D., Chiou C. J., Choi K. S., Yi Y., Michelson S., Kim S., Hayward G. S., Kim S. J. The IE2 regulatory protein of human cytomegalovirus induces expression of the human transforming growth factor beta-1 gene through an Egr-1 binding site. J. Virol. 1996; 70: 7062–7070
  • Dey B. R., Sukhatme V. P., Roberts A. B., Sporn M. B., Rauscher I F.J., II, Kim S.-J. Repression of the transforming growth factor-beta 1 gene by the Wilms' tumor suppressor WT1 gene product. Mol. Endocrinol. 1994; 8: 595–602
  • Kim S. J., Park K., Rudkin B. B., Dey B. R., Sporn M. B., Roberts A. B. Nerve growth factor induces transcription of transforming growth factor-beta 1 through a specific promoter element in PC12 cells. J. Biol. Chem. 1994; 269: 3739–3744
  • Nørgaard P., Hougaard S., Poulsen H. S., Spang-Thomsen M. Transforming growth factor β and cancer. Cancer Treat. Rev. 1995; 21: 367–403
  • Yingling J. M., Wang X.-F., Bassing C. H. Signaling by the transforming growth factor-β receptors. Biochim. Biophys. Acta. 1995; 1242: 115–136
  • López-Casillas F., Wrana J. L. and Massagué, J. Betaglycan presents ligand to the TGFβ signaling receptor. Cell 1993; 73: 1435–1444
  • Cheifetz S., Bellon T., Calés C., Vera S., Bemabeu C., Massagué J., Letarte M. Endoglin is a component of the transforming growth factor-β receptor system in human endothelial cells. J. Biol. Chem. 1992; 267: 19027–19030
  • Wrana J. L., Attisano L., Wieser R., Ventura F. and Massagué, J. Mechanism of activation of the TGF-β receptor. Nature 1994; 370: 341–347
  • Attisano L., Wrana J. L., Montalvo E. and Massagué, J. Activation of signaling by the activin receptor complex. Mol. Cell. Biol. 1996; 16: 1066–1073
  • Wieser R., Wrana J. L., Massague J. GS domain mutations that constitutively activate TβR-I, the downstream signaling component in the TGF-β receptor complex. EMBO J. 1995; 14: 2199–2208
  • Wang T., Li B. Y., Danielson P. D., Shah P. C., Rockwell S., Lechleider R. J., Martin J., Manganaro T., Donahoe P. K. The immunophilin FKBP12 functions as a common inhibitor of the TGFβ family type I receptors. Cell 1996; 86: 435–444
  • Wang T., Danielson P. D., Li B., Shah P. C., Kim S. D., Donahoe P. K. p21 Ras farnesyltransferase-α subunit in TGFβ and activin signaling. Science 1996; 271: 1120–1122
  • Kawabata M., Inamura T., Miyazono K., Engel M. E., Moses H. L. Interaction of the transforming growth factor-β type I receptor with farnesyltransferase-α. J. Biol. Chem. 1995; 270: 29628–29631
  • Chen R. H., Miettinen P. J., Maruoka E. M., Choy L., Derynck R. A WD-domain protein that is associated with, and phosphorylated by, the type II TGF-beta receptor. Nature 1995; 377: 548–552
  • Ventura F., Liu F., Doody J. and Massagué, J. Interaction of transforming growth factor-β receptor I with farnesyl-protein transferase-α in yeast and mammalian cells. J. Biol. Chem. 1996; 271: 13931–13934
  • Yamaguchi K., Shirakabe K., Shibuya H., Irie K., Oishi I., Ueno N., Taniguchi T., Nishida E., Matsumoto K. Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction. Science 1995; 270: 2008–2011
  • Massagué J. TGFβ signaling: receptors, transducers, and Mad proteins. Cell 1996; 85: 947–950
  • Zhang Y., Feng X. H., Wu R.-Y., Derynck R. Mad homologues synergize as effectors of the TGF-β response. Nature 1996; 383: 168–172
  • Macias-Silva M., Abdollah S., Hoodless P. A., Pirone R., Attisano L., Wrana J. L. MADR2 is a substrate of the TGFβ receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell 1996; 87: 1215–1224
  • Lagna G., Hata A., Hemmati-Brivanlou A., Massague J. Partnership between DPC4 and SMAD proteins in TGF-β signaling pathways. Nature 1996; 383: 832–836
  • Hahn S. A., Schutte M., Hogue A. T.M.S., Moskaluk C. A., da Costa L. T., Rozenblum E., Weinstein C. L., Fischer A., Yeo C. J., Hruban R. H., Kern S. E. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 1996; 271: 350–353
  • Liu F., Hata A., Baker J. C., Doody J., Cárcamo J., Harland R. M. and Massagué, J. A human MAD protein acting as a BMP—regulated transcriptional activator. Nature 1996; 381: 620–623
  • Roberts A. B., Sporn M. B. Differential expression of the TGF-β isoforms in embryogenesis suggests specific roles in developing and adult tissues. Mol. Reprod. Dev. 1992; 32: 91–98
  • Dickson M. C., Martin J. S., Cousins F. M., Kulkarni A. B., Karlsson S., Akhurst R. J. Defective haematopoiesis and vasculogenesis in transforming growth factor-β1 knock out mice. Development 1995; 121: 1845–1854
  • Bonyadi M., Rusholme S. A.B., Cousins F. M., Su H. C., Biron C. A., Farrall M., Akhurst R. J. Mapping of a major genetic modifier of embryonic lethality in TGFβ1 knockout mice. Nature Genet. 1997; 15: 207–211
  • Oshima M., Oshima H., Taketo M. M. TGF-β receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Devel. Biol. 1996; 179: 297–302
  • Letterio J. J., Geiser A. G., Kulkarni A. B., Roche N. S., Sporn M. B., Roberts A. B. Maternal rescue of transforming growth factor-β1 null mice. Science 1994; 264: 1936–1938
  • Diebold R. J., Eis M. J., Yin M., Ormsby I., Boivin G. P., Darrow Saffitz B. J.J.E., Doetschman T. Early-onset multifocal inflammation in the transforming growth factor β1-null mouse is lymphocyte mediated. Proc. Natl. Acad. Sci. USA 1995; 92: 12215–12219
  • Kaartinen V., Voncken J. W., Shuler C., Warburton D., Bu D., Heisterkamp N., Groffen J. Abnormal lung development and cleft palate in mice lacking TGF-β3 indicates defects of epithelial-mesenchymal interaction. Nature Genet. 1995; 11: 415–420
  • Proetzel G., Pawlowski S. A., Wiles M. V., Yin M., Boivin G. P., Howies P. N., Ding J., Ferguson M. W.J, Doetschman T. Transforming growth factor-β3 is required for secondary palate fusion. Nature Genet. 1995; 11: 409–414
  • Sellheyer K., Bickenbach J. R., Rothnagel J. A., Bundman D., Longley M. A., Krieg T., Roche N. S., Roberts A. B., Roop D. R. Inhibition of skin development by overexpression of transforming growth factor-β1 in the epidermis of transgenic mice. Proc. Natl. Acad. Sci. USA 1993; 90: 5237–5241
  • Cui W., Fowlis D. J., Cousins F. M., Duffie E., Bryson S., Balmain A., Akhurst R. J. Concerted action of TGF-β1 and its type II receptor in control of epidermal homeostasis in transgenic mice. Genes Devel. 1995; 9: 945–955
  • Fowlis D. J., Cui W., Johnson S. A., Balmain A., Akhurst R. J. Altered epidermal cell growth control in vivo by inducible expression of transforming growth factor β1 in the skin of transgenic mice. Cell Growth Diff. 1996; 7: 679–687
  • Jhappan C., Geiser A. G., Kordon E. C., Bagheri D., Hennighausen L., Roberts A. B., Smith G. H., Merlino G. Targeting expression of a transforming growth factor-β1 transgene to the pregnant mammary gland inhibits alveolar development and lactation. EMBO J. 1993; 12: 1835–1845
  • Pierce D. F., Jr, Johnson M. D., Matsui Y., Robinson S. D., Gold L. I., Purchio A. F., Daniel C. W., Hogan B. L.M., Moses H. L. Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-β1. Genes Devel. 1993; 7: 2308–2317
  • Lee M. S., Gu D., Feng L., Curriden S., Arnush M., Krahl T., Gurushanthaiah D., Wilson C., Loskutoff D. L., Fox H., Sarvetnick N. Accumulation of extracellular matrix and developmental dysregulation in the pancreas by transgenic production of transforming growth factor-β1. Am. J. Pathol. 1995; 147: 42–52
  • Sanvito F., Nichols A., Herrera P. L., Huarte J., Wohlwend A., Vassalli J.-D., Orci L. TGF-β1 overexpression in murine pancreas induces chronic pancreatitis and, together with TNF-α, triggers insulin-dependent diabetes. Biochem. Biophys. Res. Commun. 1995; 217: 1279–1288
  • Wyss-Coray T., Feng L., Masliah E., Ruppe M. D., Lee H. S., Toggas S. M., Rockenstein E. M., Mucke L. Increased central nervous system production of extracellular matrix components and development of hydrocephalus in transgenic mice overexpressing transforming growth factor-β1. Am. J. Pathol. 1995; 147: 53–67
  • Galbreath E., Kim S. J., Park K., Brenner M., Messing A. Overexpression of TGFβ1 in the central nervous system of transgenic mice results in hydrocephalus. J. Neuropathol. Exp. Neurol. 1995; 54: 339–349
  • Sanderson N., Factor V., Nagy P., Kopp J., Kondaiah P., Wakefield L., Roberts A. B., Sporn M. B., Thorgeirsson S. S. Hepatic expression of mature transforming growth factor-β1 in transgenic mice results in multiple tissue lesions. Proc. Natl. Acad. Sci. USA 1995; 92: 2572–2576
  • Zhou L., Dey C. R., Wert S. E., Whitsett J. A. Arrested lung morphogenesis in transgenic mice bearing an SP-C-TGF-beta 1 chimeric gene. Dev. Biol. 1996; 175: 227–238
  • Erlebacher A., Derynck R. Increased expression of TGF-β2 in osteoblasts results in an osteoporosis-like phenotype. J. Cell. Biol. 1996; 132: 195–210
  • Alexandrow M. G., Moses H. L. Transforming growth factor β and cell cycle regulation. Cancer Research 1995; 55: 1452–1457
  • Schwarz J. K., Bassing C. H., Kovesdi I., Datto M. B., Blazing M., George S., Wang X.-F., Nevins J. R. Expression of the E2F1 transcription factor overcomes type β transforming growth factor-mediated growth suppression. Proc. Natl. Acad. Sci. USA 1995; 92: 483–487
  • Glick A. B., Kulkarni A. B., Tennenbaum T., Hennings H., Flanders K. C., O'Reilly M., Sporn M. B., Karlsson S., Yuspa S. H. Loss of expression of transforming growth factor β in skin and skin tumors is associated with hyperproliferation and a high risk for malignant conversion. Proc. Natl. Acad. Sci. USA 1993; 90: 6076–6080
  • Markowitz S. D., Roberts A. B. Tumor suppressor activity of the TGF-β pathway in human cancers. Cyt. Growth Fact. Rev. 1996; 7: 93–102
  • Sun L., Wu G., Willson J. K.V., Zborowska E., Yang J., Rajkarunanayake I., Wang J., Gentry L. E., Wang X., Brittain M. G. Expression of transforming growth factor β type II receptor leads to reduced malignancy in human breast cancer MCF-7 cells. J. Biol. Chem. 1994; 269: 26449–26455
  • Wang J., Han W., Zborowska E., Liang J., Wang X., Willson J. K.V., Sun L., Brattain M. G. Reduced expression of transforming growth factor β type I receptor contributes to the malignancy of human colon carcinoma cells. J. Biol. Chem. 1996; 271: 17366–17371
  • Goyette M. C., Cho K., Fasching C. L., Levy D. B., Kinzler K. W., Paraskeva C., Vogelstein B., Stanbridge E. J. Progression of colorectal cancer is associated with multiple tumor suppressor gene defects but inhibition of tumorigenicity is accomplished by correction of any single defect via chromosome transfer. Mol. Cell. Biol. 1992; 12: 1387–1395
  • Eppert K., Scherer S. W., Ozcelik H., Pirone R., Hoodless P., Kim H., Tsui L.-C, Bapat B., Gallinger S., Andrulis I. L., Thomsen G. H., Wrana J. L., Attisano L. MADR2 maps to 18q21 and encodes a TGFβ-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 1996; 86: 543–552
  • Arteaga C. L., Coffey R. J., Jr., Dugger T. C., McCutchen C. M., Moses H. L., Lyons R. M. Growth stimulation of human breast cancer cells with anti-transforming growth factor β antibodies: evidence for negative autocrine regulation by transforming growth factor β. Cell Growth & Differ. 1990; 1: 367–374
  • Wu S., Theodorescu D., Kerbel R., Willson J. K.V., Mulder K. M., Humphrey L. E., Brattain M. G. TGF-beta 1 is an autocrine-negative growth regulator of human colon carcinoma FET cells in vivo as revealed by transfection of an antisense expression vector. J. Cell. Biol. 1992; 116: 187–196
  • Pierce D. F., Gorska A. E., Chytil A., Meise K. S., Page D. L., Coffey R. L., Jr, Moses H. L. Mammary tumor suppression by transforming growth factor β1 transgene expression. Proc. Nail. Acad. Sci. USA 1995; 92: 4254–4258
  • Cui W., Fowlis D. J., Bryson S., Duffie E., Ireland H., Balmain A., Akhurst R. J. TGFβ1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 1996; 86: 531–542
  • Glick A. B., Lee M. M., Darwiche N., Kulkarni A. B., Karlsson S., Yuspa S. H. Targeted deletion of the TGF-β1 gene causes rapid progression to squamous cell carcinoma. Genes Devel. 1994; 8: 2429–2440
  • Glick A. B., Weinberg W. C., Wu I. H., Quan W., Yuspa S. H. Transforming growth factor beta 1 suppresses genomic instability independent of a G1 arrest, p53, and Rb. Cancer Res. 1996; 56: 3645–3650
  • Christ M., McCartney-Francis N. L., Kulkarni A. B., Ward J. M., Mizel D. E., Mackall C. L., Gress R. E., Hines K. L., Tian H., Karlsson S., Wahl S. M. Immune dysregulation in TGF-β1-deficient mice. J. Immunol. 1994; 153: 1936–1946
  • Boivin G. P., O'Toole B. A., Ormsby I. E., Diebold R. J., Eis M. J., Doetschman T., Kier A. B. Onset and progression of pathological lesions in transforming growth factor-β1-deficient mice. Am. J. Pathol. 1995; 146: 276–288
  • Letterio J. J., Geiser A. G., Kulkarni A. B., Dang H., Kong L., Nakabayashi T., Mackall C. L., Gress R. E., Roberts A. B. Autoimmunity associated with TGF-β1 deficiency in mice is dependent on MHC class II antigen expression. J. Clin. Invest. 1996; 98: 2109–2119
  • Shull M. M., Ormsby I., Kier A. B., Pawlowski S., Diebold R. J., Yin M., Allen R., Sidman C., Proetzel B., Calvin D., Annunziata N., Doetschman T. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 1992; 359: 693–699
  • Shull M. M., Kier A. B., Diebold R. J., Yin M., Doetschman T. The importance of transforming growth factor β1 in immunological homeostasis, as revealed by gene ablation in mice. Overexpression and knockout of cytokines in transgenic mice. Academic Press, London 1994; 135–159
  • McCartney-Francis N. L., Mizel D. E., Redman R. S., Frazier-Jessen M., Panek R B, Kulkarni A. B., Ward J. M., McCarthy J. B., Wahl S. M. Autoimmune Sjägren's-like lesions in salivary glands of TGF-β1-deficient mice are inhibited by adhesion-blocking peptides. J. Immunol. 1996; 157: 1306–1312
  • Borkowski T. A., Letterio J. J., Farr A. G., Udey M. C. A role for endogenous transforming growth factor β1 in Langerhans cell biology: the skin of transforming growth factor β1 null mice is devoid of epidermal Langerhans cells. J. Exp. Med. 1996; 184: 2417–2422
  • Arsura M., Wu M., Sonenshein G. E. TGF-β1 inhibits NF-kB/Rel activity inducing apoptosis of B cells: transcriptional activation of IkBα. Immunity 1996; 5: 31–40
  • Wahl S. M. Transforming growth factor β: the good, the bad, and the ugly. J. Exp. Med. 1994; 180: 1587–1590
  • Wahl S. M., Hunt D. A., Wakefield L., McCartney-Francis N., Wahl L. M., Roberts A. B., Sporn M. B. Transforming growth factor beta (TGF-β) induces monocyte chemotaxis and growth factor production. Proc. Natl. Acad. Sci. USA 1987; 84: 5788–5792
  • Wahl S. M., Allen J. B., Weeks B. S., Wong H. L., Klotman P. E. Transforming growth factor β enhances integrin expression and type IV collagenase secretion in human monocytes. Proc. Natl. Acad. Sci. USA 1993; 90: 4577–4581
  • Brandes M. E., Wakefield L. M., Wahl S. M. Modulation of monocyte type I TGF-β receptors by inflammatory stimuli. J. Biol. Chem. 1991; 266: 19697–19703
  • Kulkarni A. B., Huh C. H., Becker D., Geiser A., Lyght M., Flanders K. C., Roberts A. B., Sporn M. B., Ward J. M., Karlsson S. Transforming growth factor-β1 null mutation in mice causes excessive inflammatory response and early death. Proc. Natl. Acad. Sci. USA 1993; 90: 770–774
  • Kulkarni A. B., Ward J. M., Yaswen L., Mackali C. L., Bauer S. R., Huh C. G., Gress R. E., Karlsson S. Transforming growth factor-β1 null mice. An animal model for inflammatory disorders. Am. J. Pathol. 1995; 146: 1–12
  • McCartney-Francis N. L., Mizel D. E., Frazier-Jessen M., Kulkarni A. B., McCarthy J. B., Wahl S. M. Lacrimal gland inflammation is responsible for ocular pathology in TGF-β1 null mice, Submitted
  • Dang H., Geiser A. G., Letterio J. J., Nakabayashi T., Kong L., Fernandes G., Talal N. SLE-like autoantibodies and Sjögren's syndrome-like lymphoproli-feration in TGF-β knockout mice. J. Immunol. 1995; 155: 3205–3212
  • Yaswen L., Kulkarni A. B., Fredrickson T., Mittleman B., Schiffmann R., Payne S., Longenecker G., Mozes E., Karlsson S. Autoimmune manifestations in the transforming growth factor-β1 knockout mouse. Blood 1996; 87: 1439–1445
  • Geiser A. G., Letterio J. J., Kulkarni A. B., Karlsson S., Roberts A. B., Sporn M. B. TGF-β1 controls expression of major histocompatibility genes in the postnatal mouse: aberrant histocompatability antigen expression in the pathogenesis of the TGF-β1 null mouse phenotype. Proc. Natl. Acad. Sci. USA 1993; 90: 9944–9948
  • Frazier-Jessen M., McCartney-Francis N., Wahl S. M. Transforming growth factor-β: a cytokine paradigm. Handbook of Immune Modulating Agents, T. Kresina. Marcel Dekker, New York 1997, in press
  • Stavnezer J. Regulation of antibody production and class scitching by TGF-β. J. Immunol. 1995; 155: 1647–1651
  • Hines K. L., Kulkarni A. B., McCarthy J. B., Tien H., Ward J. M., Christ M., McCartney-Francis N. L., Furcht L. T., Karlsson S., Wahl S. M. Synthetic fibronectin peptides interrupt inflammatory cell infiltration in TGF-β1 knockout mice. Proc. Natl. Acad. Sci. USA 1994; 91: 5187–5191
  • Mossman T. R., Sad S. The expanding universe of T-cell subsets: Th1, Th2, and more. Immunol. Today 1996; 17: 138–146
  • Nicholson L. B., Kuchroo V. K. Manipulation of the Th1/Th2 balance in autoimmune disease. Curr. Opin. Immunol. 1996; 8: 837–842
  • Powrie F., Carlino J., Leach M. W., Mauze S., Coffman R. L. A critical role for transforming growth factor-β but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RBlow CD4+ T cells. J. Exp. Med. 1996; 183: 2669–2674
  • Shimada A., Rohane P., Fathman C. G., Charlton B. Pathogenic and protective roles of CD45RBlow CD4+ cells correlate with cytokine profiles in the spontaneously autoimmune diabetic mouse. Diabetes 1996; 45: 71–78
  • Vodovotz Y., Bogdan C. Control of nitric oxide synthase expression by transforming growth factor-β: implications for homeostasis. Prog. Growth Factors Res. 1994; 5: 341–351
  • Vodovotz Y., Geiser A. G., Chesler L., Letterio J. J., Campbell A., Lucia M. S., Sporn M. B., Roberts A. B. Spontaneously increased production of nitric oxide and aberrant expression of the inducible nitric oxide synthase in vivo in the transforming growth factor β1 null mouse. J. Exp. Med. 1996; 183: 2337–2342
  • McCallion R. L., Ferguson M. W.J. Fetal wound healing and the development of antiscarring therapies for adult wound healing. The Molecular and Cellular Biology of Wound Repair, R AF. Clark. Plenum Press, New York 1996; 561–600
  • Frank S., Madlener M., Werner S. Transforming growth factors β1, β2, and β3 and their receptors are differentially regulated during normal and impaired wound healing. J. Biol. Chem. 1996; 271: 10188–10193
  • Brown R. L., Ormsby I., Doetschman T. C., Greenhalgh D. G. Wound healing in the transforming growth factor-β1-deficient mouse. Wound Rep. Reg. 1995; 3: 25–36
  • Letterio J. J., Roberts A. B. Transforming growth factor-β1-deficient mice: identification of isoform-specific activities in vivo. J. Leuk. Biol. 1996; 59: 769–774
  • Border W. A., Noble N. A. Transforming growth factor β in tissue fibrosis. N. Eng. J. Med. 1994; 331: 1286–1292
  • Kopp J. B., Factor V. M., Mozes M., Nagy P., Sanderson N., Bättinger E. P., Klotman P. E., Thorgeirsson S. S. Transgenic mice with increased plasma levels of TGF-β1 develop progressive renal disease. Lab. Invest. 1996; 74: 991–1003
  • Wahl S. M., Frazier-Jessen M., Jin W. W., Kopp J. B., Sher A., Cheever A. W. Cytokine regulation of schistosome-induced granuloma and fibrosis. Kidney Int. 1997; 51: 1370–1375
  • Border W. A., Noble N. A., Yamamoto T., Harper J. R., Yamaguchi Y., Pierschbacher M. D., Ruoslahti E. Natural inhibitor of transforming growth factor-β protects against scarring in experimental kidney disease. Nature 1992; 360: 361–364
  • Isaka Y., Brees D. K., Ikegaya K., Kaneda Y., Imai E., Noble N. A., Border W. A. Gene therapy by skeletal muscle expression of decorin prevents fibrotic disease in rat kidney. Nature Med. 1996; 2: 418–423
  • Imai E., Isaka Y., Akagi Y., Arai M., Moriyama T., Takenaka M., Kaneko T., Horio M., Ando A., Orita Y., Kaneda Y., Ueda N., Kamada T. Application of antisense oligodeoxynucleotides (ODNs) for the intervention of kidney disease. Cytokines, Growth Factors and Macrophages, H. Koide, I. Ichikawa. Karger, Basel 1996; 86–93
  • Kitamura M., Burton S., English J., Kawachi H., Fine L. G. Transfer of a mutated gene encoding active transforming growth factor-β1 suppresses mitogenesis and IL-1 response in the glomerulus. Kidney Int. 1995; 48: 1747–1757
  • Isaka Y., Fujiwara Y., Ueda N., Kaneda Y., Kamada T., Imai E. Glomerulosclerosis induced by in vivo transfection of transforming growth factor-β or platelet-derived growth factor gene into the rat kidney. J. Clin. Invest. 1993; 92: 2597–2601
  • Choi B. M., Kwak H. J., Jun C. D., Park S. D., Kim K. Y., Kim H.-R., Chung H.-T. Control of scarring in adult wounds using antisense transforming growth factor-β1 oligodeoxynucleotides. Immunol. Cell Biol. 1996; 74: 144–150
  • Benn S. I., Whitsitt J. S., Broadley K. N., Nanney L. B., Perkins D., He L., Patel M., Morgan J. R., Swain W. F., Davidson J. M. Particle-mediated gene transfer with transforming growth factor-β1 cDNAs enhances wound repair in rat skin. J. Clin. Invest. 1996; 98: 2894–2902
  • Grainger D. J., Witchell C. M., Metcalfe J. C. Tamoxifen elevates transforming growth factor-β and suppresses diet-induced formation of lipid lesions in mouse aorta. Nature Med. 1995; 1: 1067–1072
  • Brandes M. E., Allen J. B., Ogawa Y., Wahl S. M. Transforming growth factor β1 suppresses acute and chronic arthritis in experimental animals. J. Clin. Invest. 1991; 87: 1108–1113
  • Weiner H. L. Oral tolerance. Proc. Natl. Acad. Sci. USA 1994; 91: 10762–10765
  • Chen Y., Kuchroo V. K., Inobe J. I., Hafler D. A., Weiner H. L. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 1994; 265: 1237–1240
  • Weiner H. L., Mackin G. A., Matsui M., Orav E. J., Khoury S. J., Dawson D. M., Hafler D. A. Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis. Science 1993; 259: 1321–1324
  • Trentham D. E., Dynesius-Trentham R. A., Orav E. J., Combitchi D., Lorenzo C., Sewall K. L., Hafler D. A., Weiner H. L. Effects of oral administration of type II collagen on rheumatoid arthritis. Science 1993; 261: 1727–1730
  • McFarland H. F. Complexities in the treatment of autoimmune disease. Science 1996; 274: 2037–2038
  • Fakhrai H., Dorigo O., Shawler D. L., Lin H., Mercola D., Black K. L., Royston I., Sobol R. E. Eradication of established intracranial rat gliomas by transforming growth factor β antisense gene therapy. Proc. Natl. Acad. Sci. USA 1996; 93: 2909–2914
  • Grainger D. J., Metcalfe J. C. Tamoxifen: teaching an old drug new tricks. Nature Med. 1996; 2: 381–385

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.