40
Views
30
CrossRef citations to date
0
Altmetric
Original Article

Cytokines in Parasitic Diseases: The Example of Cutaneous Leishmaniasis

, , &
Pages 157-180 | Published online: 10 Jul 2009

References

  • Grau G. E., Piguet P. F., Vassali P., Lambert P. H. Tumor necrosis factor and other cytokines in cerebral malaria: experimental and clinical data. Immunol. Res. 1989; 112: 49–70
  • Mosmann T. R., Coffman R. L. Th1 and Th2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 1989; 7: 145–173
  • Romagnani S. Th1 and Th2 in human diseases. Clin. Immunol. & Immunopathology 1996; 80: 225–235
  • Zurawski G., de Vries J. E. Interleukin 13, an interleukin 4-like cytokine that acts on monocytes and B cells, but not on T cells. Immunology today 1994; 15: 19–26
  • Röcken M., Saurat J. H., Hauser C. A common precursor for CD4+ T cells producing IL-2 and IL-4. J. Immunol. 1992; 148: 1031–1036
  • Kamogawa Y., Minasi L.-A., Carding S. R., Bottomly K., Flavell R. A. The realtionship of IL-4- and IFNγ-producing T cells studied by lineage ablation of IL-4 producing cells. Cell 1993; 75: 985–995
  • Croft M., Carter L., Swain S. L., Dutton R. W. Generation of polarized antigen-specific CD8 effector populations: reciprocal action of interleukin (IL)-4 and IL-12 in promoting type 2 versus type 1 cytokine profile. J. Exp. Med. 1994; 180: 1715–1728
  • Mosmann T. R., Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol. today 1996; 17: 138–146
  • Ferrick D. A., Schrenzel M. D., Mulvania T., Hsieh B., Ferlin W. G., Lepper H. Differential production of interferon-γ and interleukin-4 in response to Th1- and Th2-stimulating pathogens by γ/δ T cells in vivo. Nature (Lond.) 1995; 373: 255–257
  • Yoshimoto T., Paul W. E. CD4 pos, NK1.1 pos T cells promptly produce interleukin 4 in response to in vivo, challenge with anti-CD3. J. Exp. Med. 1994; 179: 1285–1295
  • Trinchieri G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu. Rev. Immunol. 1995; 13: 251–276
  • Moore K. W., O'Garra A., de Waal Malefyt R., Vieira P., Mosmann T. R. Interleukin-10. Annu. Rev. Immunol. 1993; 11: 165–190
  • Fitch F. W., McKisic M. D., Lancki D. W., Gajewski T. F. Differential regulation of murine T lymphocyte subsets. Annu. Rev. Immunol. 1993; 11: 29–48
  • Fiorentino D. F., Bond M. W., Mossman T. R. Two types of mouse T helper cell. IV Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J. Exp. Med. 1989; 170: 2081–2095
  • Locksley R. M., Heinzel F. P., Sadick M. D., Holaday B. J., Gardner K. D. Murine cutaneous leishmaniasis: Susceptibility correlates with differential expansion of helper T cell subset. Ann. Inst. Pasteur/Immunol. 1987; 138: 744–749
  • Heinzel F. P., Sadick M. D., Holaday B. J., Coffman R. L., Locksley R. M. Reciprocal expression of interferon γ or interleukin 4 during the resolution or progression of murine leishmaniasis. J. Exp. Med. 1989; 169: 59–72
  • Nickell S. P., Keane M., So M. Further characterization of protective Trypanosoma cruzi,-specific CD4+ T cell clones T helper type 1-like phenotype and reactivity with shed trypomastigote antigens. Infect. Immun. 1993; 61: 3250–3258
  • Oswald I. P., Caspar P., Jankovic D., Wynn T. A., Pearce E. J., Sher A. IL-12 inhibits Th2 cytokine responses induced by eggs of Shistosoma. J. Immunol. 1994; 153: 1707–1713
  • Behin R., Mattel J., Sordat B. Leishmania tropica:, pathogenicity and in vitro, macrophage function of inbred mice. Exp. Parasitology 1979; 48: 81–91
  • Mitchell G. F., Curtis J. M., Scollay R. G., Handman E. Resistance and abrogation of resistance to cutaneous leishmaniaisis in reconstituted BALB/c mice. Aust. J. Exp. Biol. Med. Sci. 1981; 59: 539–544
  • Milon G., Titus R. G., Cerottini J. C., Marchal G., Louis J. A. Higher frequency of Leishmania major-specific, L3T4+ T cells in susceptible BALB/c as compared with resistant CBA mice. J. Immunol. 1986; 136: 1467–1471
  • Titus R. G., Milon G., Marchal G., Vassalli P., Cerottini J. C., Louis J. A. Involvement of specific Lyt-2+ T cells in the immunological control of experimentally induced murine cutaneous leishmaniasis. Eur. J. Immunol. 1987; 17: 1429–33
  • Liew F. Y. Functional heterogeneity of CD4+ T cells in leishmaniasis. Immunol. today 1989; 10: 40–45
  • Sadick M. D., Heinzel F. P., Holaday B. J., Pu R. T., Dawkins R. S., Locksley R. M. Cure of murine leishmaniasis with anti-interleukin 4 monoclonal antibody. Evidence for a T cell-dependent, interferon-γ independent mechanism. J. Exp. Med. 1990; 171: 115–127
  • Titus R. G., Ceredig R., Cerottini J. C., Louis J. A. Therapeutic effect of anti-L3T4 monoclonal antibody GK1.5 on cutaneous leishmaniasis in genetically-susceptible BALB/c mice. J. Immunol. 1985; 135: 2108–2114
  • Müller I., Garcia-Sanz J. A., Titus R., Behin R., Louis J. Analysis of the cellular parameters of the immune responses contributing to resistance and susceptibility of mice to infection with the intracellular parasite. Leishmania major, Immunol. Rev. 1989; 112: 95–113
  • Holaday B. J., Sadick M. D., Wang Z.-E., Reiner S. L., Heinzel F. P., Parslow T. G., Locksley R. M. Reconstitution of Leishmania, immunity in severe combined immunodeficient mice using Th1- and Th2-like cell lines. J. Immunol. 1991; 147: 1653–1658
  • Assreuy J., Cunha F. Q., Epperlein M., Noronha-Dutra A., O'Donnell C. A., Liew F. Y., Moncada S. Production of nitric oxide and superoxide by activated macrophages and killing of Leishmania major. Eur. J. Immunol. 1994; 24: 672–676
  • Wang Z.-E., Reiner S. L., Zheng S., Dalton D. K., Locksley R. M. CD4+ effector cells default to the Th2 pathway in interferon γ-deficient mice infected with Leishmania major. J. Exp. Med. 1994; 179: 1367–1371
  • Swihart K., Fruth U., Messmer N., Hug K., Behin R., Huang S., Del Giudice G., Aguet M., Louis J. A. Mice from a genetically resistant background lacking the interferon gamma receptor are susceptible to infection with Leishmania major, but mount a polarized T helper cell 1-type CD4+ T cell response. J. Exp. Med. 1995; 181: 961–971
  • Liew F. Y., Millott S., Li Y., Lelchuck R., Chan W. L., Ziltener H. Macrophage activation by interferon-γ from host-protective T cells is inhibited by interleukin (IL) 3 and IL4 produced by disease-promoting T cells in leishmaniasis. Eur. J. Immunol. 1989; 19: 1227–1232
  • Leal L. M.C.C., Moss D. W., Kuhn R., Muller W., Liew F. Y. Interleukin-4 transgenic mice of resistant background are susceptible to Leishmania major, infection. Eur. J. Immunol. 1993; 23: 566–569
  • Titus R. G., Marchand M., Boon T., Louis J. A. A limiting dilution assay for quantifying Leishmania major, in tissue of infected mice. Parasite Immunol. 1985; 545–555
  • Aebisher T., Moody S. F., Handman E. Persistence of virulent Leishmania major, in murine cutaneous leishmaniasis: a possible hazard of the host. Infect. Immun. 1993; 61: 220–226
  • Stenger S., Donhauser N., Thurin H., Rollinghoff M., Bogdan C. Reactivation of latent leishmaniasis by inhibition of inducible nitric oxide synthase. J. Exp. Med. 1996; 183: 1501–1514
  • Seder R. A., Paul W. E., Davis M. M., Fazekas de St Groth B. The presence of interleukin 4 during in vitro, priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J. Exp. Med. 1992; 176: 1091–1098
  • Seder R. A., Gazzinelli R., Sher A., Paul W. E. Interleukin 12 acts directly on CD4+ T cells to enhance priming for inteferon-γ production and diminishes interleukin 4 inhibition of such priming. Proc. Natl. Acad. Sci. USA 1993; 90: 10188–10192
  • Hsieh C.-S., Macatonia S. E., Tripp C. S., Wolf S. F., O'Garra A., Murphy K. M. Development of Th1 CD4+ T cells through IL-12 produced by Listeria,-induced macrophages. Science 1993; 260: 547–549
  • Macatonia S. E., Hsieh C.-S., Murphy K. M., O'Garra A. Dendritic cells and macrophages are required for Th1 development of CD4+ T cells from αβ TCR transgenic mice: IL-12 substitution for macrophages to stimulate IFN-γ production is IFN-γ dependent. International Immunology 1993; 5: 1119–1128
  • Schmitt E., Hoehn P., Germann T., Rüde E. Differential effects of interleukin 12 on the development of naive mouse CD4+ T cells. Eur. J. Immunol. 1994; 24: 343–347
  • Kobayashi M., Fitz L., Ryan M., Hewick R. M., Clark S. C., Chau S., Loudon R., Sherman F., Perussia B., Trinchieri G. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biological effects on human lymphocytes. J. Exp. Med. 1989; 170: 827–845
  • Stern A. S., Padlaski F Y., Hulmes J. D., Pan Y. E., Quinn P. M., Wolitzky A. G., Familletti P. C., Stremlo D. L., Trutt T., Chizzonite R., Gately M. K. Purification to homogeneity and partial characterization of cytotoxic lymphocyte factor from human B lymphocytes. Proc. Natl. Acad. Sci. USA 1990; 87: 6808–6812
  • Wolf S. F., Temple P. A., Kobayashi M., Young D., Dicig M., Lowe L., Dzialo R., Fitz L., Ferenz C., Hewick R. M., Kelleher K., Hermann S. M., Clark S. C., Azzoni L., Chan S. H., Trinchieri G., Perussia B. Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biological effect on T and natural killer cells. J. Immunol. 1991; 146: 3074–3081
  • Chan S. H., Perussia B., Gupta J. W., Kobayashi M., Pospisil M., Young H. A., Wolf S. F., Young D., Clark S. C., Trinchieri G. Induction of IFN-γ production by NK cell stimulatory factor (NKSF): characterization of the responder cells and synergy with other inducers. J. Exp. Med. 1991; 173: 689–879
  • D'Andrea A., Rengaraju M., Valiante N. M., Chehimi J., Kubin M., Aste M., Chan S. H., Kobayashi M., Young D., Nickbarg E., Chizzonite R., Wolf S. F., Trinchieri G. Production of natural killer cell stimulatory factor (interleukin-12) by peripheral blood mononuclear cells. J. Exp. Med. 1992; 176: 1387–1398
  • Heinzel F. P., Schoenhaut D. S., Rerko R. M., Rosser L. E., Gately M. K. Recombinant interleukin 12 cures mice infected with Leishmania major. J. Exp. Med. 1993; 177: 1505–1509
  • Sypek J. P., Chung C. L., Mayor S. E.H., Subramanyam S. J., Goldman S. J., Sieburth D. S., Wolf S. F., Schaub R. G. Resolution of cutaneous leishmaniasis: interleukin 12 initiates a protective T helper type 1 immune response. J. Exp. Med. 1993; 177: 1793–1802
  • Heinzel F. P., Rerko R. M., Ahmed F., Pearlman E. Endogenous IL-12 is required for control of Th2 cytokine responses capable of exacerbating Leishmaniasis in normally resistant mice. J. Immunol. 1995; 155: 730–739
  • Wynn T. A., Eltoum I., Oswald L P., Cheever A. W., Sher A. Endogenous IL-12 regulates granuloma formation induced by eggs of Schistosoma mansoni, and exogenous IL-12 both inhibits and prophylactically immunizes against egg pathology. J. Exp. Med. 1994; 179: 1551–1561
  • Finkelmann F. D., Madden K. D., Cheever A. W., Katona I. M., Morris S. C., Gately M. K., Hubbard B. R., Gause W. C., Urban J. F.J. Effects of interleukin-12 on immune response and host protection in mice infected with intestinal nematode parasites. J. Exp. Med. 1994; 179: 1563–1572
  • Magram J., Connaughton S. E., Warrier R. R., Carvajal D. M., Wu C.-Y., Ferrante J., Stewart C., Sarmiento Y., Faherty D. A., Gately M. K. IL-12-deficient mice are defective in IFN-γ production and type 1 cytokine responses. Immunity 1996; 4: 471–481
  • Mattner F., Magram J., Ferrante J., Launois P., Di Padova K., Behin R., Gately M. K., Louis J. A., Alber G. Genetically resistant mice lacking interleukin-12 are susceptible to infection with Leishmania major, and mount a polarized Th2 cell response. Eur. J. Immunol. 1996; 26: 1553–1559
  • Reiner S. L., Zheng S., Wang Z. E., Stowring L., Locksley R. M. Leishmania, promastigotes evade interleukin 12 (IL-12) induction by macrophages and stimulate a broad range of cytokines from CD4+ T cells during initiation of infection. J. Exp. Med. 1994; 179: 447–456
  • Vieira L. Q., Hondowicz B. D., Afonso L. C.C., Wysocka M., Trinchieri G., Scott P. Infection with Leishmania major, induces interleukin-12 production in vivo. Immunology letters 1994; 40: 157–161
  • Scharton-Kersten T., Afonso L. C.C., Wysocka M., Trinchieri G., Scott P. IL-12 is required for natural killer cell activation and subsequent T helper 1 cell development in experimental leishmaniasis. J. Immunol. 1995; 154: 5320–5330
  • Afonso L. C.C., Sharton T. M., Vieira L. Q., Wysocka M., Trinchieri G., Scott P. The adjuvant effect of interleukin-12 in a vaccine against Leishmania major. Science 1994; 263: 235–237
  • Güler M. L., Gorham J. D., Hsieh C. S., Mackey A. J., Steen R. G., Dietrich W. F., Murphy K. M. Genetic susceptibility to Leishmania:, IL-12 responsiveness in Th1 cell development. Science 1996; 271: 984–987
  • Coffman R. L., Varkila K., Scott P., Chatelain R. Role of cytokines in the differentiation of CD4+ Tcell subsets in vivo. Immunol. Rev. 1991; 123: 189–205
  • Pernis A., Gupta S., Gollob K. J., Garfein E., Coffman R. L., Schindler C., Rothman P. Lack of interferon-γ receptor β chain and the prevention of interferon γ signaling in Th1 cells. Science 1995; 269: 245–247
  • Wenner C. A., Güler M. L., Macatonia S. E., O'Garra A., Murphy K. M. Roles of IFN-γ and IFN-α in IL-12-induced T helper cell-1 development. J. Immunol. 1996; 156: 1442–1447
  • Szabo S. J., Dighe A. S., Gubler U., Murphy K. M. Regulation of the interleukin (IL)-12R β2 subunit expression in developing T helper (Th1) and Th2 cells. J. Exp. Med. 1997; 185: 817–824
  • Skeen M. J., Mille M. A., Shinnick T. M., Ziegler H. K. Regulation of murine macrophage IL-12 production. Activation of macrophages in vivo, restimulation in vitro, and modulation by other cytokines. J. Immunol. 1996; 156: 1196–1206
  • Snidjers A., Hilkens C. M.U., van der Pouw Kraan T. C.T.M., Engel M., Aarden L. A., Kapsenberg M. L. Regulation of bioactive IL-12 production in liposaccharide-stimulated human monocyte is determined by the expression of the p35 subunit. J. Immunol. 1996; 156: 1207–1212
  • Ma X., Chow J. M., Gri G., Carra G., Gerosa F., Wolf S. F., Dzialo R., Trinchieri G. The interleukin 12 p40 gene promoter is primed by interferon-γ in monocytic cells. J. Exp. Med. 1996; 183: 147–157
  • Flesch I. E., Hess J. H., Huang S., Aguet M., Rothe J., Bluethmann H, Kaufmann S. H.E. Early interleukin 12 production by macrophages in response to mycobacterial infection depends on interferon γ and tumor necrosis factor α. J. Exp. Med. 1995; 181: 1615–1621
  • Belosevic M., Finbloom D. S., van der Meide P. H., Slayter M. V., Nacy C. A. Administration of monoclonal anti-IFN-γ antibodies in vivo, abrogates natural resistance of C3H/HeN mice to infection with Leishmania major. J. Immunol. 1989; 143: 266–274
  • Scott P. A. IFN-γ modulates the early development of Th1 and Th2 responses in a murine model of cutaneous leishmaniasis. J. Immunol. 1991; 147: 3149–3155
  • Hsieh C.-S., Macatonia S. E., O'Garra A., Murphy K. M. Pathogen-induced Th1 phenotype development in CD4+ αβ-TCR transgenic T cells is macrophage dependent. International Immunology 1993; 5: 371–382
  • Corry D. B., Reiner S. L., Linsley P. S., Locksley R. M. Differential effects of blockade of CD28-B7 on the development of Th1 or Th2 effector cells in experimental leishmaniasis. J. Immunol. 1994; 153: 4142–4148
  • Heinzel F. P., Rerko R. M., Hatam F., Locksley R. M. IL-2 is necessary for the progression of leishmaniasis in susceptible murine hosts. J. Immunol. 1993; 150: 3924–3931
  • Launois P., Ohteki T., Swihart K., MacDonald H. R., Louis J. A. In susceptible mice, Leishmania major, induce very rapid interleukin-4 production by CD4+ T cells which are NK 1.1-. Eur. J. Immunol. 1995; 25: 3298–3307
  • Launois P., Swihart K., Milon G., Louis J. A. Early production of IL-4 in susceptible mice infected with Leishmania major, rapidly induces IL-12 unresponsiveness. J. Immunol. 1997; 158: 3317–3324
  • Paul W. E., Seder R. A., Plaut M. Lymphokine and cytokine production by Fc epsilon RI+ cells. Adv. Immunol. 1993; 53: 1–29
  • Sabin E. A., Pearce E. J. Early IL-4 production by non-CD4+ cells at the site of antigen deposition predicts the development of a T helper 2 cell response to Schistosoma mansoni eggs. J. Immunol. 1995; 155: 4844–4853
  • Bendelac A., Lantz O., Quimby M. E., Yewdell J. W., Bennink J. R., Brutkiewicz R. R. CD1 recognition by mouse NK 1+ T lymphocytes. Science 1995; 268: 863–865
  • Arase H., Arase N., Ogasawara K., Good R. A., Onoe K. An NK 1.1+ CD4+8- single-positive thymocyte subpopulation that expresses a highly skewed T-cell antigen receptor Vβ family. Proc. Natl. Acad. Sci. USA 1992; 89: 6506–6512
  • Ohteki T., MacDonald H. R. Stringent V beta requirement for the development of NK 1.1+ T cell receptor-alpha/beta+ cells in mouse liver. J. Exp. Med. 1994; 180: 395–382
  • Yoshimoto T., Bendelac A., Watson C., Hu-Li J., Paul W. E. Role of NK 1.1+ T cells in a Th2 response and in immunoglobulin E production. Science 1995; 270: 1845–1847
  • Yoshimoto T., Bendelac A., Hu-Li J., Paul W. E. Defective IgE production by SJL mice is linked to the absence of CD4+ NK 1.1+ T cells that promptly produce interleukin 4. Proc. Natl. Acad. Sci. USA 1995; 92: 11931–11934
  • von der Weid T., Beebe A. M., Roopenian D. C., Coffman R. L. Early production of IL-4 and induction of Th2 responses in the lymph nodde originate from an MHC class I-independent CD4+ NK 1.1- T cell population. J. Immunol. 1996; 157: 4421–4427
  • Brown D. R., Fowell D. J., Corry D. B., Wynn T. A., Moskowitz N M., Cheever A. W., Locksley R. M., Reiner S. L. β2-microglobulin-dependent NK 1.1+ T cells are nor essential for T helper cell 2 immune responses. J. Exp. Med. 1996; 184: 1295–1304
  • Launois P., Maillard I., Pingel S., Swihart K., Xenarios I., Acha-Orbea H., Diggelmann H., Locksley R. M., MacDonald H. R., Louis J. A. IL-4 rapidly produced by Vβ4 Vα8 CD4+ T cells in BALB/c mice infected with Leishmania major, instructs Th2 cell development and susceptibility to infection. Immunity 1997; 6: 541–549
  • Reiner S. L., Wang Z.-E., Hatam F., Scott P., Locksley R. M. TH1 and TH2 cell antigen receptors in experimental leishmaniasis. Science 1993; 259: 1457–1460
  • Mougneau E., Altare F., Wakil A. E., Zheng S., Coppola T., Wang Z.-E., Waldmann R., Locksley R. M., Glaichenhaus N. Expression cloning of a protective Leishmania, antigen. Science 1995; 268: 563–566
  • Julia V., Rassoulzadegan M., Glaichenhaus N. Resistance to Leishmania major, induced by tolerance to a single antigen. Science 1996; 274: 421–423
  • Grewal I. S., Flavell R. A. A central role of CD40 ligand in the regulation of CD4+ T-cell responses. Immunology today 1996; 17: 410–414
  • Campbell K. A., Ovendale P. J., Kennedy M. K., Fanslow W. C., Reed S. G., Maliszewski C. R. CD40 ligand is required for protective cell-mediated immunity to Leishmania major. Immunity 1996; 4: 283–289
  • Kamanaka M., Yu P., Yasui T., Yoshida K., Kawabe T., Horii T., Kishimoto T., Kikutani H. Protective role of CD40 in Leishmania major, infection at two distinct phases of cell-mediated immunity. Immunity 1996; 4: 275–281
  • Brown J. A., Titus R. G., Nabavi N., Glimcher L. H. Blockade of CD86 ameliorates Leishmania major, infection by down regulating the Th2 response. J. Inf. diseases 1996; 147: 1303–1308
  • Seder R. A., Germain R. N., Linsley P. S., Paul W. E. CD28-mediated costimulation of interleukin 2 (IL2) production plays a critical role in T cell priming for IL-4 and interferon γ production. J. Exp. Med. 1994; 179: 299–304
  • Brown D. R., Green J. M., Moskowitz N. H., Davis M., Thompson C. B., Reiner S. L. Limited role of CD28-mediated signals in T helper subset differentiation. J. Exp. Med. 1996; 184: 803–810
  • Shinde S., Wu Y., Guo Y., Niu Q., Xu J., Grewal I. S., Flavell R., Liu Y. CD40L is important for induction of, but not response to, costimulatory activity. ICAM-1 as the second costimulatory molecule rapidly upregulated by CD40L. J. Immunol. 1996; 157: 2764–2768
  • Guo Y., Wu Y., Shinde S., Sy M. S., Auruffo A., Liu Y. Identification of a costimulatory molecule rapidly induced by CD40L as CD44H. J. Exp. Med. 1996; 184: 955–961
  • Reiner S. L., Zheng S., Corry D. B., Locksley R. M. Constructing poly-competitor cDNAs for quantitative PCR. J. Immunol. Meth. 1994; 165: 37–46

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.