35
Views
20
CrossRef citations to date
0
Altmetric
Original Article

Cytokines in the Neuroendocrine System

Pages 181-216 | Published online: 10 Jul 2009

References

  • Blalock J. E. A molecular basis for bidirectional communication between the immune and neuroendocrine systems. Physiol. Rev. 1989; 69: 1–32
  • Blalock J. E., Smith E. M. A complete regulatory loop between the immune and neuroendocrine systems. Fed. Proc 1985; 44: 108–111
  • O'Dorisio M. S., Panerai A. Neuropeptides and immunopeptides: messengers in a neuroimmune axis. Annals of New York Academy of Sciences, New York 1990
  • Besedovsky H. O., Del Rey A. Immune-neuroendocrine circuits: integrative role of cytokines. Frontiers in Neuroendocrinology. Raven Press Ltd, New York 1992; 61–94, Anonymous
  • Gaillard R. C. Neuroendocrine-immune system interactions. The immune–hypothalamo–pituitary–adrenal axis. Trends Endocrinol. Metab. 1994; 5: 303–309
  • Karalis K., Mastorakos G., Chrousos G. P., Tolis G. Somatostatin analogs suppress the inflammatory reaction in vivo. J. Clin. Invest. 1994; 93: 2000–2006
  • Karalis K., Mastorakos G., Sano H., Wilder R. L., Chrousos G. P. Somatostatin may participate in the antiinflammatory actions of glucocorticoids. Endocrinology 1995; 136: 4133–4138
  • Homo-Delarche F., Durant S. Hormones neurotransmitters and neuropeptides as modulators of lymphocyte functions. Immunopharmacology of Lymphocytes, M. Rola-Pleszczynski. Academic Press Limited, London 1994; 169–240
  • Weigent D. A., Blalock J. E. Interactions between the neuroendocrine and immune systems: common hormones and receptors. Immunol. Rev. 1987; 100: 79–108
  • Chrousos G. P. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Eng. J. Med. 1995; 332: 1351–1362
  • Crofford L. J., Sano H., Karalis K. Corticotropin-releasing hormone in synovial fluids and tissues of patients with rheumatoid arthritis and osteoarthritis. J. Immunol. 1993; 151: 1587–1596
  • Ekman R. E., Servenius B., Castro M. G. Biosynthesis of corticotropin-releasing hormone in human T-lymphocytes. J. Neuroimmunol. 1993; 44: 7–13
  • Koenig J. I. Presence of cytokines in the hypothalamic-Pituitary axis. Prog. Neuroendocr. Immunol. 1991; 4: 143–153
  • Plata-Salaman C. R. Immunoregulations in the nervous system. Neurosci. Biobehav. Rev. 1991; 15: 185–215
  • Fontana A., Christensen F., Dubs R., Gemsa D., Weber E. Production of prostaglandin E and an interleukin-1 like factor by cultured astrocytes and C6 glioma cells. J. Immunol. 1982; 129: 2413–2419
  • Hetier E., Ayala J., Denèfle P., Boussean A., Rouget P., Mallat M. Brain macrophages synthesize interleukin-1 and interleukin-1 mRNAs in vitro. Neurosci. Res. 1988; 21: 391–397
  • Breder C. D., Tsujimoto M., Terano Y., Scott D. W., Saper C. B. Distribution and characterization of tumor necrosis factor-alpha-like immunoreactivity in the murine central nervous system. J. Comp. Neurol. 1993; 337: 543–567
  • Tada M., Suzuki K., Yamakawa Y., Sawamura Y., Abe H., van Meir E., de Tribolet N. Human glioblastoma cells produce 77 amino acid interleukin-8 (IL-8(77)). J. Neurooncol 1993; 16: 25–34
  • Riccardi-Castagnoli P., Pirami L., Righi M., Sacerdote P., Locatelli V., Bianchi M., Sassano M., Valsasnini P., Shammah S., Panerai A. E. Cellular sources and effects of tumor necrosis factor-alpha on pituitary cells and in the central nervous system. Ann. N. Y. Acad. Sci. 1990; 594: 156–168
  • Sébire G., Emilie D., Wallon C., Hery C., Devergne O., Delfraissy J. F., Galanaud P., Tardieu M. In vitro, production of IL-6, IL-1 beta and tumor necrosis factor-alpha by human embryonic microglial and neural cells. J. Immunol. 1993; 150: 1517–1523
  • Fabry Z., Fitzsimmons K. M., Herlein J. A., Moninger T. O., Dobbs M. B., Hart M. N. Production of the cytokines interleukin-1 and -6 by murine brain microvessel endothelium and smooth muscle pericytes. J. Neuroimmunol. 1993; 47: 23–34
  • Breder C D, Dinarello C. A., Sapler C. B. Interleukin-1 immunoreactive innervation of the human hypothalamus. Science 1988; 240: 321–324
  • Lechan R. M., Toni R., Clark B. D., Cannon J. G., Shaw A. R., Dinarello C. A., Reichlin S. Immunoreactive interleukin-1 localization in the rat forebrain. Brain Res. 1990; 514: 135–140
  • Schobitz B., Voorhuis D. A., De Kloet E. R. Localization of interleukin 6 mRNA and interleukin 6 receptor mRNA in rat brain. Neurosci. Lett. 1992; 136: 189–192
  • Schobitz B., De Kloet E. R., Sutanto W., Holsboer F. Cellular localization of interleukin 6 mRNA and interleukin 6 receptor mRNA in rat brain. Eur. J. Neurosci. 1993; 5: 1426–1435
  • Navarra P., Pozzoli G., Becherucci C., Preziosi P., Grossman A. B., Parente L. Prostaglandin E2 and bacterial lipopolysaccharide stimulate bioactive interleukin-1 release from rat hypothalamic explants. Neuroendocrinology 1993; 57: 257–261
  • Spangelo B. L., Judd A. M., MacLeod R. M., Goodman D. W., Isakson P. C. Endotoxin-induced release of interleukin-6 from rat medial basal hypothalami. Endocrinology 1990; 127: 1779–1785
  • Yamaguchi M., Yoshimoto Y., Komura H., Koike K., Matsuzaki N., Hirota K. Interleukin-1 beta and tumor necrosis factor alpha stimulate the release of gonadotropin-releasing hormone and interleukin-6 by primary cultured rat hypothalamic cells. Acta. Endocrinol. (Copenh) 1990; 123: 476–480
  • Lieberman A. P., Pitha P. M., Shin H. S., Shin M. L. Production of tumor necrosis factor and other cytokines by astrocyte stimulated with lipopolysaccharide or a neurotropic virus. Proc. Natl. Acad. Sci. USA 1989; 86: 6348–6352
  • Chung I. Y., Benveniste E. N. Tumor necrosis factor-alpha production by astrocytes: Induction by lipopolysaccharide, IFN-γ, and IL-1beta. Immunol. 1990; 144: 2999–3007
  • Ban E., Marquette C., Sarrieau A., Fitspatrick F., Fillion G., Milon G., Rostene W., Haour F. Regulation of interleukin-1 receptor expression in mouse brain and pituitary by lipopolysaccharide and glucocorticoids. Neuroendocrinology 1993; 58: 581–587
  • Marquette Cecaldi C.P.E., Ban E., Tsiang H., Haour F. Interleukin-1 receptors in brain and pituitary during rabies virus infection in mice. Arch. Virol. 1996; 141: 573–585
  • Torres-Anjel M. J., Volz D., Torres M. J.R., Turk M., Tshikuka J. G. Failure to thrive, wasting syndrome, and immunodeficiency in rabies: a hypophyseal/hypothalamic/thymic axis effect of rabies virus. Rev. Infect. Dis. 1988; 10: S710–725
  • Molenaar G. J., Berkenbosch F., Van Dam A. M., Lugard C. M.J.E. Distribution of interleukin-1 beta immunoreactivity within the porcine hypothalamus. Brain Res. 1993; 608: 169–174
  • Koenig J. I., Snow K., Clark B. D., Toni R., Cannon J. G., Shaw A. R., Dinarello C. A., Reichlin S., Lee S. L., Lechan R. M. Intrinsic pituitary interleukin-1 beta is induced by bacterial lipopolysaccharide. Endocrinology 1990; 126: 3053–3058
  • Gatti S., Bartfai T. Induction of tumor necrosis factor-alpha mRNA in the brain after peripheral endotoxin treatment: comparison with interleukin-1 family and interleukin-6. Brain Res. 1993; 624: 291–294
  • Sauer J., Arzt E., Gumprecht H., Hopfner U., Stalla G. K. Expression of interleukin-1 receptor antagonist in human pituitary adenomas in vitro. J. Clin. Endocrinol. Metab. 1994; 19: 1857–1863
  • Arzt E., Stelzer G., Renner U., Lange M., Muller O. A., Stalla G. K. Interleukin-2 and interleukin-2 receptor expression in human corticotrophic adenoma and murine pituitary cell cultures. J. Clin. Invest. 1992; 90: 1944–1951
  • Vankelecom H., Carmeliet P., Van Damme J., Billiau A., Denef C. Production of interleukin-6 by folliculo-stellate cells of the anterior pituitary gland in a histiotypic cell aggregate culture system. Neuroendocrinology 1989; 49: 102–106
  • Vankelecom H., Matthys P., DammeVan J., Eremans H., Billiau A., Denef C. Immunocytochemical evidence that S-100 positive cells of the mouse anterior pituitary contain interleukin-6 immunoreactivity. J. Histochem. Cytochem. 1993; 41: 151–156
  • Inoue K., Matsumoto H., Koyama C., Shibata K., Nakazato Y., Ito A. Establishment of a folliculo-stellate-like cell line from a murine thyrotropic pituitary tumor. Endocrinology 1992; 131: 3110–3116
  • Matusumoto H., Koyama C., Sawada T., Koike K., Hirota K., Miyake A., Arimura A., Inoue K. Pituitary folliculo-stellate-like cell line (TtT/GF) responds to novel hypophysiotropic peptide (pituitary adenylate cyclase-activating peptide), showing increased adenosine 3′,5′-monophosphate and interleukin-6 secretion and cell proliferation. Endocrinology 1993; 133: 2150–2155
  • Yamaguchi M., Matsuzaki N., Hirota K., Miyake A., Tanizawa O. Interleukin 6 possibly induced by interleukin 1beta in the pituitary gland stimulates the release of gonadotropins and prolactin. Acta. Endocrinol. (Copenh) 1990; 122: 201–205
  • Spangelo B. L., MacLeod R. M., Isakson P. C. Production of interleukin-6 by anterior pituitary cells in vitro. Endocrinology 1991; 126: 582–586
  • Schobitz B., Holsboer F., Kikkert R., Sutanto W., De Kloet E. R. Peripheral and central regulation of IL-6 gene expression in endotoxin-treated rats. Endocr. Regul. 1992; 26: 103–109
  • Schobitz B., Van Den Dobbelsteen M., Holsboer F., Sutanto W., De Kloet E. R. Regulation of interleukin 6 gene expression in rat. Endocrinology 1993; 132: 1569–1576
  • Velkeniers B., Vergani P., Trouillas J., D'Haens J., Hooghe R. J., Hooghe Peters E. L. Expression of IL-6 mRNA in normal rat and human pituitaries and in human pituitary adenomas. J. Histochem. Cytochem. 1994; 42: 67–76
  • Muramami N., Fukata J., Tsukada T., Kobayashi H., Ebisui O., Segawa H., Muro S., Imura H., Nakao K. Bacterial lipopolysaccharide-induced expression of interleukin-6 messenger ribonucleic acid in the rat hypothalamus, pituitary, adrenal gland, and spleen. Endocrinology 1993; 133: 2574–2578
  • Spangelo B. L., Judd A. M., Isakson P. C., MacLeod R. M. Interleukin-1 stimulates interleukin-6 release from rat anterior pituitary cells in vitro. Endocrinology 1991; 128: 2685–2692
  • Yamaguchi M., Koike K., Matsuzaki N., Yoshimoto Y., Taniguchi T., Miyake A., Tanizawa O. The interferon family stimulates the secretions of prolactin and interleukin-6 by the pituitary gland in vitro. J. Endocrinol. Invest. 1991; 14: 457–461
  • Spangelo B. L., Jarvis W. D., Judd A. M., MacLeod R. M. Induction of interleukin-6 release by interleukin-1 in rat anterior pituitary cells in vitro,: evidence for an eicosanoid-dependent mechanism. Endocrinology 1991; 129: 2886–2894
  • Tatsuno I., Somogyvari Vigh A., Mizuno K., Gottschall P. E., Hidaka H., Arimura A. Neuropeptide regulation of interleukin-6 production form the pituitary: stimulation by pituitary adenylate cyclase activating polypeptide and calcitonin gene-related peptide. Endocrinology 1991; 129: 1797–1804
  • Carmeliet P., Vankelecom H., Van Damme J., Billiau A., Denef C. Release of interleukin-6 from anterior pituitary cell aggregates: developmental pattern and modulation by glucocorticoids and forskolin. Neuroendocrinology 1991; 53: 29–34
  • Sarlis N. J., Stephanou A., Knight R. A., Lightman S. L., Chowdrey H. S. Effects of glucocorticoids and chronic inflammatory stress upon anterior pituitary interleukin-6 mRNA expression in the rat. Br. J. Rheumatol. 1993; 32: 653–657
  • Jones T. H., Daniels M., James R. A., Justice S. K., McCorkle R., Price A., Kendall-Taylor P., Weetman A. P. Production of bioactive and immunoactive IL-6 and expression of IL-6 mRNA by human pituitary adenomas. J. Clin. Endocrinol. Metab. 1994; 78: 180–187
  • Tsagarakis S., Kontogeorgos G., Giannou P., Thalassinos N., Woolley J., Besser G. M., Grossman A. Interleukin-6, a growth promoting cytokine, is present in human pituitary adenomas: An immunocytochemical study. Clin. Endocrinol. 1992; 37: 163–167
  • Spangelo B. L., deHoll P. D., Kalabay L., Bond B. R., Arnaud P. Neurointer- mediate pituitary lobe cells synthesize and release interleukin-6 in vitro:, Effects of lipopolysaccharide and interleukin-1. Endocrinology 1994; 135: 556–563
  • Ban E., Milon G., Prudhomme N., Fillion G., Haour F. Receptors for interleukin-1 (alpha and beta) in mouse brain: mapping and neuronal localization in hippocampus. Neuroscience 1991; 43: 21–30
  • Takao T., Culp S. G., Newton R. C., De Souza E. B. Type I interleukin-1 receptors in the mouse brain-endocrine-immune axis labelled with 125I recombinant human interleukin-1 receptor antagonist. J. Neuroimmunol. 1992; 41: 51–60
  • Cunningham J. E.T., Wada E., Carter D. B., Tracey D. E., Battey J. F., De Souza E. B. In situ, histochemical localization of type I interleukin-1 receptor messenger RNA in the central nervous system, pituitary, and adrenal gland of the mouse. J. Neurosci. 1992; 12: 1101–1114
  • Katsuura G., Gottschall P. E., Arimura A. Identification of a high-affinity receptor for interleukin-1 beta in rat brain. Biochem. Biophys. Res. Commun. 1988; 156: 61–67
  • Cunningham J. E.T., Wada E., Carter D. B., Tracey D. E., Battey J. F., De Souza E. B. Localization of interleukin-1 receptor messenger RNA in murine hippocampus. Endocrinology 1991; 128: 2666–2668
  • Takao T., Culp S. G., De Souza E. B. Reciprocal modulation of interleukin-1beta (IL-1beta) and IL-1 receptors by lipopolysaccharide (endotoxin) treatment in the mouse brain-endocrine-immune axis. Endocrinology 1993; 132: 1497–1504
  • Marquette C., Van Dam A. M., Van Rooijen N., Berkenbosch F., Haour F. Peripheral macrophage depletion prevents down regulation of central interleukin-1 receptors in mice after endotoxin administration. Psychoneuroendocrinology 1994; 19: 189–196
  • Reinisch N., Wolkersdorfer M., Kahler C. M., Ye K., Dinarello C. A., Wiedemann C. J. Interleukin-1 receptor type I mRNA in mouse brain as affected by peripheral administration of bacterial lipopolysaccharide. Neurosci. Lett. 1994; 166: 165–167
  • De Souza E. B. Corticotropin-releasing factor and interleukin-1 receptors in the brain-endocrine-immune axis. Role in stress response and infection. Ann. N. Y. Acad. Sci. 1993; 697: 9–27
  • Araujo D. M., Lapchak P. A., Collier B., Quirion R. Localization of interleukin-2 immunoreactivity and interleukin-2 receptors in the rat brain: interaction with cholinergic system. Brain Res. 1989; 498: 257–266
  • Lapchak P. A., Araujo D. M., Quirion R., Beaudet A. Immunoautoradiographic localization of interleukin 2-like immunoreactivity and interleukin 2 receptors (Tac antigen-like immunoreactivity) in the rat brain. Neuroscience 1991; 44: 173–184
  • Lowenthal J. W., Castle B. E., Christiansen J., Schreurs J., Rennick D., Arai N., Hoy P., Takebe Y., Howard M. Expression of high affinity receptors for murine interleukin 4 (BSF-1) on hemopoietic and nonhemopoietic cells. J. Immunol. 1988; 140: 456–464
  • Cornfield L. J., Sills M. A. High affinity interleukin-6 binding sites in bovine hypothalamus. Eur. J. Pharmacol. 1991; 202: 113–115
  • Gadient R. A., Otten U. Differential expression of interleukin-6 (IL-6) and interleukin-6 receptor (IL-6R) mRNAs in rat hypothalamus. Neurosci. Lett. 1993; 153: 13–16
  • Gadient R. A., Otten U. Expression of interleukin-6 (IL-6) and interleukin-6 receptor (IL-6R) mRNAs in rat brain during postnatal development. Brain Res. 1994; 637: 10–14
  • Kinouchi K., Brown G., Pasternak G., Donner D. B. Identification and characterization of receptors for tumor necrosis factor-alpha in the brain. Biochem. Biophys. Res. Commun. 1991; 18: 1532–1538
  • Wolvers D. A., Marquette C., Berkenbosch F., Haour F. Tumor necrosis factor-alpha: specific binding sites in rodent brain and pituitary gland. Eur. Cytokine. Netw. 1993; 4: 377–381
  • Chang Y., Albright S., Lee F. Cytokines in the central nervous system: expression of macrophage colony stimulating factor and its receptor during development. J. Neuroimmunol. 1994; 52: 9–17
  • Constam D. B., Philipp J., Malipiero U. V., ten Diejke P., Schachner M., Fontana A. Differential expression of transforming growth factor beta 1, 2 and 3 by glioblastoma cells, astrocytes and microglia. J. Immunol. 1992; 148: 1404–1410
  • Haour G. H., Ban E. M., Milon G. M., Baran D., Fillion G. M. Brain interleukin-1 receptors: characterization and modulation after lipopolysaccharide injection. Progr. Neuroendocr. Immunol. 1990; 3: 196–204
  • Takao T., Tracey D. E., Mitchell W. M., De Souza E. B. Interleukin-1 receptors in mouse brain: Characterization and neuronal localization. Endocrinology 1990; 127: 3070–3078
  • Benveniste E. Inflammatory cytokines within the central nervous system: sources, functions and mechanisms of action. Am. J. Physiol. 1992; 263: C1–C16
  • Dinarello C. A. The biology of interleukin-1. Chem. Immunol. 1992; 51: 1–32
  • Dower S. K., Sims J. E., Cerretti D. P., Bird T. A. The interleukin-1 system: receptors, ligands and signals. Chem. Immunol. 1992; 51: 33–64
  • Collotta F., Re F., Muzio M., Bertini R., Polentarutti N., Sironi M., Giri J. G., Dower S. K., Sims J. E., Mantovani A. Interleukin-1 type II receptor: a decoy target for IL-1 that is regulated by IL-4. Science 1993; 261: 472–476
  • Gabellec M. M., Griffais R., Fillion G., Haour F. Brain expression of interleukin-1 alpha and beta of interleukin-1 receptor antagonist mRNA in mouse brain: regulation by lipopolysaccharide (LPS) stimulation. Mol. Brain Res. 1995; 31: 122–130
  • Gabellec M. M., Griffais R., Fillion G., Haour F. Interleukin-1 receptors type I and II in the mouse brain: kinetics of mRNA expressions after peripheral administration of bacterial lipopolysaccharide (LPS). J. Neuroimmunol. 1996; 66: 65–70
  • Sawada M., Itoh Y., Suzumura A., Marunouchi T. Expression of cytokine receptors in cultured neuronal and glial cells. Neurosci. Lett. 1993; 160: 131–134
  • Beutler B., van Huffel C. Unraveling function in the TNF ligand and receptor families. Science 1994; 264: 667–668
  • Cheng B., Christakos S., Mattson M. P. Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis. Neuron 1994; 12: 139–153
  • Hurwitz A. A., Lyman W. D., Guida M. P., Calderon T. M., Berman J. W. Tumor necrosis factor alpha induces adhesion molecules expression on human fetal astrocytes. J. Exp. Med. 1992; 176: 1631–1636
  • Aloisi F., Care A., Borsellino G., Gallo P., Rose S., Basani A. Production of hemolymphopoietic cytokines (IL-6, IL-8, colony-stimulating factors) by normal human astrocytes in response to IL-1beta and TNFalpha. J. Immunol. 1992; 149: 2358–2366
  • Lee S. C., Liu W., Dickson D. W., Brosnan C. F., Berman J. W. Cytokine production by human fetal microglia and astrocytes: Differential induction by lipopolysaccharide and IL-1beta. J. Immunol. 1993; 150: 2659–2667
  • Otero G. C., Merill J. E. Cytokine receptors on glial cells. Glia 1994; 11: 117–128
  • Yong V. W., Moumdjian R., Young F. P., Ruijus T. G., Feedmen M. S., Cashman N., Antel J. P. Y-interferon promotes proliferation of adult human astrocytes in vitro, and reactive gliosis in the adult mouse brain in vivo. Proc. Natl. Acad. Sci. USA 1991; 88: 7016–7020
  • Cunningham E. T., Wada E., Carter D. B., Tracy D. E., Battery J. F., De Souza E. B. In situ, histochemical localization of type I interleukin-1 receptor messenger RNA in the central nervous system, pituitary and adrenal gland of the mouse. J. Neurosci. 1992; 3: 1101–1114
  • Matta S. G., Linner K. M., Sharp B. M. Interleukin-1 alpha and interleukin-1 stimulated adrenocorticotropin secretion in the rat through a similar hypothalamic receptor(s): Effects of interleukin-1 receptor antagonist protein. Neuroendocrinology 1993; 57: 14–22
  • Yabuuchi K., Minami M., Katsumata S., Satoh M. Localization of type I interleukin-1 receptor mRNA in the rat brain. Mol. Brain Res. 1994; 27: 27–36
  • Rothwell N. J. Functions and mechanisms of interleukin-1 in the brain. Trends Pharmacol. Sci. 1991; 12: 430–436
  • Haour F., Marquette C., Ban E., Crumeyrolle-Arias M., Rostene W., Tsiang H., Fillion G. Receptors for interleukin-1 in the central nervous and neuroendocrine systems: role in infection and stress. Ann. Endocrinol. (Paris) 1995; 56: 173–179
  • Parnet P., Brunke D. L., Goujon E., Mainard J. D., Biragyn A., Arkins S., Dantzer R., Kelley K. W. Molecular identification of two types of interleukin-1 receptors in the murine pituitary gland. J. Neuroendocrinol. 1993; 5: 213–219
  • French R. A., Zachary J. F., Dantzer R., Frawley L. S., Chizzonite R., Parnet P., Kelley K. W. Dual expression of p80 type I and p68 type II interleukin-1 receptors on anterior pituitary cells synthesizing growth hormone. Endocrinology 1996; 137: 4027–4036
  • Webster E. L., Tracey D. E., De Souza E. B. Upregulation of IL-1 receptors in mouse at T-20 pituitary tumor cells following treatment with corticotropin- releasing factor. Endocrinology 1991; 129: 2796–2798
  • Payne L. C., Weigent D. A., Blalock J. E. Induction of pituitary sensitivity to interleukin-1: a new function for corticotropin-releasing hormone. Biochem. Biophys. Res. Commun. 1994; 198: 480–484
  • Smith L. R., Brown S. L., Blalock J. E. Interleukin-2 inducton of ACTH secretion: presence of an interleukin-2 receptor alpha-chain-like molecule on pituitary cells. J. Neuroimmunol. 1989; 21: 249–254, 1989
  • Ohmichi M., Hirota K., Koike K., Kurachi H., Ohtsuka S., Matsuzaki N., Yamaguchi M., Miyake A., Tanizawa O. Binding sites for interleukin-6 in the anterior pituitary gland. Neuroendocrinology 1992; 55: 199–203, 1992
  • Taga T., Hibi M., Hirata Y., Yamasaki K., Yasukawa K., Matsuda T., Hirano T., Kishimoto T. Interleukin-6 triggers the association of its receptor with a possible signal transducer, gp130. Cell 1989; 58: 573–581
  • Hibi M., Murakami M., Saito M., Hirano T., Taga T., Kishimoto T. Molecular cloning of an IL-6 signal transducer, gp130. Cell 1990; 63: 1149–1157
  • Arzt E., Buric R., Stelzer G., Stalla J., Sauer J., Renner U., Stalla G. K. Interleukin involvement in anterior pituitary cell growth regulation: Effects of IL-2 and IL-6. Endocrinology 1993; 132: 459–467
  • Tomida M., Yamamoto-Yamaguchi Y., Hozumi M. Purification of a factor inducing differentiation of mouse fibroblast L929 cells. J. Biol. Chem. 1984; 259: 10978–10982
  • Ferrara N., Winer J., Henzel W. J. Pituitary follicular cells secrete an inhibitor of aortic endothelial cell growth: Identification as leukemia inhibitory factor. Proc. Natl. Acad. Sci. USA 1992; 89: 698–702
  • Akita S., Webster J., Ren S. G., Takino H., Said J., Zand O., Melmed S. Human and pituitary expression of leukemia inhibitory factor. Novel intrapituitary regulation of adrenocorticotropin hormone synthesis and secretion. J. Clin. Invest. 1995; 95: 1288–1298
  • Carter D. A. Expression of leukemia inhibitory factor/cholinergic differentiation factor is linked to adrenoceptor stimulation. Biochem. Soc. Trans. 1994; 23: 114S
  • Wang Z., Ren S. G., Melmed S. Hypothalamic and pituitary leukemia inhibitory factor gene expression in vivo:, a novel endotoxin-inducible neuroendocrine interface. Endocrinology 1996; 137: 2947–2953
  • Rathjen P. D., Toth S., Willis A., Heath J. K., Smith A. G. Differentiation inhibiting activity is produced in matrix-associated and diffusible forms that are generated by alternate promoter usage. Cell 1990; 62: 1105–1114
  • Stahl N., Yancopoulos G. The alpha, beta and kinases of cytokine receptor complexes. Cell 1993; 74: 587–590
  • Webster J., Ren S. G., Melmed S. Leukemia inhibitory factor and oncostatin M stimulate ACTH secretion and POMC expression in mouse corticotroph tumor cells. J. Endocrinol. 1995; 144: 294
  • Stefana B., Ray D. W., Melmed S. Leukemia inhibitory factor (LIF) induces differentiation of pituitary corticotroph function: a neuro-endocrine phenotypic switch. Proc. Natl. Acad. Sci. USA 1996; 93: 12502–12506
  • Ray D. W., Ren S. G., Melmed S. Leukemia inhibitory factor (LIF) stimulates propiomelanocortin (POMC) expression in a corticotroph cell line. Role of STAT pathway. J. Clin. Invest. 1996; 97: 1852–1859
  • Escary J. L., Perreau J., Dumenil D., Ezine S., Brulet P. Leukemia inhibitory factor is necessary for maintenance of haematopoietic stem cells and thymocyte stimulation. Nature 1993; 363: 361–364
  • Stewart C. L., Kaspar P., Brunet L. J., Bhatt H., Gadi I., Kontgen F., Abbondanzo J. S. Blastocyst implantation depends on maternal expression of leukemia inhibitory factor. Nature 1992; 359: 76–79
  • Akita S., Malkin J., Melmed S. Disrupted murine leukemia inhibitory factor (LIF) gene attenuates adrenocorticotropic hormone (ACTH) secretion. Endocrinology 1996; 137: 3140–3143
  • Bloom B. R., Bennett B. Mechanism of a reaction in vitro, associated with delayed-type hypersensitivity. Science 1996; 153: 80–82
  • Bernhagen J., Calandra T., Mitchell R. A., Martin S. B., Tracey K. J., Voelter W., Manogue K. R., Cerami A., Bucala R. MIF is a pituitary-derived cytokine that potentiates lethal endotoxaemia. Nature 1993; 365: 756–759
  • Bernhagen J., Calandra T., Mitchell R. A., Martin S. B., Tracey K. J., Voelter W., Manogue K. R., Cerami A., Bucala R. MIF is a pituitary-derived cytokine that potentiates lethal endotoxaemia. Nature 1993; 365: 756–759
  • Nishino T., Bernhagen J., Shiiki H., Calandra T., Dohi K., Bucala R. Localization of macrophage migration inhibitory factor (MIF) to secretory granules within the corticotrophic and thyrotrophic cells of the pituitary gland. Mol. Med. 1995; 1: 781–788
  • Chautard T., Steinmann M., Thompson N., Calandra T., Pralong F., Gaillard R. C., Waeber G. Transcriptional regulation of the MIF gene in AtT-20 and in primary rat pituitary cells. 79th Annual Meeting of the Endocrine Society, MinneapolisUSA, 1997, abstract
  • Calandra T., Bernhagen J., Mitchell R. A., Bucala R. The macrophage is an important and previously unrecognized source of macrophage migration inhibitory factor. J. Exp. Med. 1994; 179: 1895–1902
  • Calandra T., Bernhagen J., Metz C. N., Spiegel L. A., Bacher M., Donnelly T., Cerami A., Bucala R. MIF as a glucocorticoid-induced modulator of cytokine production. Nature 1995; 377: 68–71
  • Bucala R. Identification of MIF as a new pituitary hormone and macrophage cytokine and its role in endotoxic shock. Immunol. Lett. 1994; 43: 23–26
  • Kluger M. Fever: Role of endogenous pyrogens and cryogens. Physiol. Rev. 1991; 71: 93–127
  • Krueger J., Walter J., Dinarello C., Wolff S., Chedid L. Sleep promoting effects of endogenous pyrogen (interleukin-1). Am. J. Physiol 1984; 246: R994–R999
  • Besedovski H. O., Del Rey A. Immune-neuro-endocrine interactions: facts and hypotheses. Endocr. Rev. 1996; 17: 64–102
  • Banks W. A., Ortiz L., Plotkin S. R., Kastin A. J. Human interleukin-1 alpha, murine IL-1alpha and murine IL-1beta are transported from blood to brain in the mouse by a shared saturable mechanism. J. Pharmacol. Exp. Ther. 1991; 259: 988–996
  • Ulich T. R., Yi E. S., Yin S., Smith C., Remick D. Intratracheal administration of endotoxin and cytokines. VII: The soluble interleukin-1 receptor and the soluble tumor necrosis factor receptor II (p80) inhibit acute inflammation. Clin. Immunol. Immunopathol. 1994; 72: 137–140
  • Banks W. A., Plotkin S. R., Kastin A. J. Permeability of the blood-brain barrier to soluble cytokine receptors. Neuroimmunomodulation 1995; 2: 161–165
  • Gutierrez E. G., Banks W. A., Kastin A. J. Blood-borne interleukin-1 receptor antagonist crosses the blood-brain barrier. J. Neuroimmunol. 1994; 55: 153–160
  • Coceani F., Lees J., Dinarello C. A. Occurence of interleukin-1 in cerebrospinal fluid of the conscious cat. Brain Res. 1988; 446: 245–250
  • Blatteis C. M., Dinarello C. A., Shibata M., Llanos Q., Quan N., Busija D. W. Does circulating IL-1 enter the brain?. Thermal Physiology, J. B. Mercer. Elsevier, New York 1989; 385
  • McCoy J., Matta S., Sharp B. Prostaglandins mediate the ACTH response to interleukin-1-beta instilled into hypothalamic median eminence. Neuroendocrinology 1994; 60: 426–435
  • Matta S. G., Singh J., Newton R., Sharp B. M. The adrenocorticotropin response to interleukin-1 beta instilled into the rat median eminence depends on the local release of catecholamines. Endocrinology 1990; 111: 2175–2182
  • Spinedi E., Hadid R., Daneva T., Gaillad R. C. Cytokines stimulate the CRH but not the vasopressin neuronal system: evidence for a median eminence site of interleukin-6 action. Neuroendocrinology 1992; 56: 46–53
  • Navarra P., Pozzoli G., Brunetti L., Ragazzoni E., Besser G. M., Grossman A. Interleukin-1 beta and interleukin-6 specifically increase the release of prostaglandin E2 from rat hypothalamic explants in vitro. Neuroendocrinology 1992; 56: 61–68
  • Katsuura G., Arimura A., Koves K., Gottschall P. E. Involvement of organum vasculosum of laminae terminalis and preoptic area in interleukin-1 beta-induced ACTH release. Am. J. Physiol. 1990; 258: E163–E171
  • Blatteis C. M. Role of the OVLT in the febrile response to circulating pyrogens. Prog. Brain Res. 1992; 91: 409–412
  • Nakamori T., Morimoto A., Yamaguchi K., Watanabe T., Long N. C., Murakami N. Organum vasculosum laminae terminalis is a brain site to produce interleukin-1-beta during fever. Brain Res. 1993; 618: 155–159
  • Stitt J. T., Bernheim H. A. Differences in endogenous pyrogen fevers induced by i.v. and i.c.v. routes in rabbits. J. Appl. Physiol. 1985; 59: 342–347
  • Chuluyan H. E., Saphier D., Rohn W. M., Dunn A. J. Noradrenergic innervation of the hypothalamus participates in adrenocortical response to interleukin-1. Neuroendocrinology 1992; 56: 106–111
  • Palazzolo D. L., Quadri S. K. Interleukin-1 inhibits serotonin release from the hypothalamus in vitro. Life Sci. 1992; 51: 1797–1802
  • Ericsson A., Kovacs K. J., Sawchenko P. E. J. Neurosci. 1994; 14: 897–913
  • Quagliarello V., Wispelwey B., Long W., Scheld W. Recombinant human interleukin-1 induces meningitis and blood-brain barrier injury in the rat. J. Clin. Invest. 1991; 87: 1360–1366
  • Claudio L., Martiney J. A., Brosnan C. F. Ultra-structural studies of the blood-retina barrier after exposure to interleukin-1 beta or tumour necrosis factor-alpha. Lab. Invest 1994; 70: 850–861
  • Lustig S., Danenberg H. D., Kafri Y., Kobiler D., Ben-Nathan D. Viral Neuroinvasion and encephalitis induced by lipopolysaccharide and its mediators. J. Exp. Med. 1992; 176: 707–712
  • Fleshner M., Goehler L., Herman J., Relton J., Maier S., Watkins L. Interleukin-1beta induced corticosterone elevation and hypothalamic NE depletion is vagally mediated. Brain Res. Bull. 1995; 37: 605–610
  • Day H. E.W., Akil H. Differential pattern of c-fos mRNA in rat brain following central and systemic administration of interleukin-1beta implications for mechanism of action. Neuroendocrinology 1996; 63: 207–218
  • Goehler L., Busch C., Tartaglia N., Relton J., Sisk D., Maier S., Watkins L. Blockade of cytokine induced conditioned taste aversion by sub-diaphragmatic vagotomy: further evidence for vagal mediation of immune-brain communication. Neurosci. Lett. 1995; 185: 163–166
  • Layé S., Bluthé R.-M., Kent S., Combe C., Medina C., Parnet P., Kelley K., Dantzer R. Subdiaphragmatic vagotomy blocks induction of IL-1beta mRNA in mice brain in response to peripheral LPS. Am. J. Phys. 1995; 268: R1327–R1331
  • Niijima A. The afferent discharges from sensors for interleukin-1beta in the hepato-portal system in the anaesthetized rat. J. Physiol. 1991; 446: 236P
  • Wan W., Wetmore L., Sorensen C., Greenberg Y., Nance D. Neural and biochemical mediators of endotoxin and stress-induced c-fos expression in the rat brain. Brain Res. Bull. 1994; 34: 7–14
  • Watkins L. R., Goehler L. E., Relton J. K., Tartaglia N., Sibert L., Martin D., Maier S. F. Blockade of interleukin-1 induced hyperthermia by sub-diaphragmatic vagotomy: evidence for vagal mediation of immune-brain communication. Neurosci. Lett. 1995; 183: 27–31
  • Shintani F., Nakaki T., Kanba S., Kato R., Asai M. Role of interleukin-1 in stress responses. Mol. Neurobiol. 1995; 10: 47–71
  • Barbanel G., Ixart G., Szafarczyk A., Malaval F., Assenmacher I. Intra-hypothalamic infusion of interleukin-1beta increases the release of corticotropin-releasing hormone (CRH-41) and adrenocorticotropic hormone (ACTH) in free-moving rats bearing a push-pull cannula in the median eminence. Brain Res. 1990; 516: 31–36
  • Suda T., Tozawa F., Ushiyama T., Sumitomo T., Yamada M., Demura H. Interleukin-1 stimulates corticotropin-releasing factor gene expression in rat hypothalamus. Endocrinology 1990; 126: 1223–1228
  • Schöbitz B., De Kloet E. R., Holsboer F. Gene expression and function of interleukin 1, interleukin 6 and tumor necrosis factor in the brain. Prog. Neurobiol. 1994; 44: 397–432
  • Rothwell N. J., Hopkins S. J. Cytokines and the nervous system. II: Actions and mechanisms of action. Trends Neurosci. 1995; 18: 130–136
  • Turnbull A., Rivier C. Brain-periphery connections: do they play a role mediating the effect of central injected interleukin-1β on gonadal function?. Neuroimmunomodulation 1995; 2: 224–235
  • Faggioni R., Benigni F., Ghezzi P. Proinflammatory cytokines as pathogenetic mediators in the central nervous system: brain-periphery connections. Neuroimmunomodulation 1995; 2: 2–15
  • Gottschall P. E., Komaki G., Arimura A. Increased circulating interleukin-1 and interleukin-6 after intracerebroventricular injection of lipopolysaccharide. Neuroendocrinology 1992; 56: 935–938
  • DeSimoni M. G., Sironi M., DeLuigi A., Manfridi A., Mantovani A., Ghezzi P. Intracerebroventricular injection of interleukin-1 induces high circulating levels of interleukin-6. J. Exp. Med. 1990; 171: 1773–1778
  • DeSimoni M. G., DeLuigi A., Gemma L., Sironi M., Manfridi A., Ghezzi P. Modulation of systemic interleukin-6 induction by central interleukin-1. Am. J. Physiol. 1993; 265: R739–R742
  • DeSimoni M. G., Del Bo R., De Luigi A., Simard S., Forloni G. Central endotoxin induces different patterns of interleukin (IL)-1beta and IL-6 messenger ribonucleic acid expression and IL-6 secretion in the brain and periphery. Endocrinology 1995; 136: 897–902
  • Blalock J. E. The syntax of immune-neuroendocrine communication. Immunol. Today 1994; 15: 504–511
  • Rivest S., Rivier C. The role of corticotropin-releasing factor and interleukin- 1 in the regulation of neurons controlling reproductive functions. Endocr. Rev. 1995; 16: 177–199
  • Besedovsky H., Del Rey A., Sorkin E., Dinarello C. A. Immuno-regulatory feedback between interleukin-1 and glucocorticoid hormones. Science 1986; 233: 652–654
  • Bateman A., Singh A., Krai T., Solomon S. The immune-hypothalamic- pituitary-adrenal axis. Endocr. Rev. 1989; 10: 92–112
  • Spangelo B. L., Judd A. M., Call G. B., Zumwalt J., Gorospe W. C. Role of the cytokines in the hypothalamic–pituitary–adrenal and gonadal axes. Neuro-immunomodulation 1995; 2: 299–312
  • Woloski B. M.R.N.J., Smith E. M., Meyer W. J., III, Fuller G. M., Blalock J. E. Corticotropin releasing activity of monokines. Science 1985; 230: 1035–1037
  • Kehrer P., Turnill D., Dayer J. M., Muller A. F., Gaillard R. C. Human recombinant interleukin-1 beta and alpha, but not recombinant tumor necrosis factor alpha stimulate ACTH release from rat anterior pituitary cells in vitro, in a prostaglandin E2 and cAMP independent manner. Neuroendocrinology 1988; 48: 160–166
  • Spangelo B. L., Judd A. M., Isakson P. C., MacLeod R. M. Interleukin-6 stimulates anterior pituitary hormone release in vitro. Endocrinology 1989; 125: 575–577
  • Spangelo B. L., Judd A. M., Ross P. C., Login I. S., Jarvis W. D., Badamchian M., Goldstein A. L., MacLeod R. M. Thymosin Fraction 5 stimulates prolactin and growth hormone release from anterior pituitary cells in vitro. Endocrinology 1987; 121: 2035–2053
  • Beach J. E., Smallridge R. C., Kinzer C. A., Bernton E. W., Holaday J. W., Fein U. G. Rapid release of multiple hormones from rat pituitaries perifused with recombinant Interleukin-1. Life Sci. 1987; 44: 1–7
  • Berkenbosch F., Van Oers J., Del Rey A., Tilders F., Besedovsky H. Corticotropin-releasing activity of monokines. Science 1987; 230: 1035
  • Tsagarakis S., Gillies G., Rees L. H., Besser M., Grossman A. Interleukin-1 directly stimulates the release of corticotropin releasing factor from rat hypothalamus. Neuroendocrinology 1989; 49: 98–101
  • Uehara A., Gillis S., Arimura A. Effects of interleukin-1 on hormone release from normal rat pituitary cells in primary culture. Neuroendocrinology 1987; 45: 343–347
  • Vankelecom H., Andries M., Billiau A., Denef C. Evidence that folliculostellate cells mediate the inhibitory effect of interferon-gamma on hormone secretion in rat anterior pituitary cell cultures. Endocrinology 1992; 130: 3537–3546
  • Morand I., Fonlupt P., Guerrier A., Trouillas J., Calle A., Remy C., Rousset B., Munari-Silem Y. Cell-to-cell communication in the anterior pituitary: evidence for gap junction-mediated exchanges between endocrine cells and folliculostellate cells. Endocrinology 1996; 137: 3356–3367
  • Gaillard R. C., Turnill D., Sappino P., Muller A. F. Tumor necrosis factor alpha inhibits the hormonal response of the pituitary gland to hypothalamic releasing factors. Endocrinology 1990; 127: 101–106
  • Gaillard R. C. Pituitary-Immune System Interactions. Molecular and Clinical Advances in Pituitary disorders. A basic and clinical update, S. Melmed. Endocrine Research and Education, Inc., Beverly Hills, CAUSA 1993; 87–92
  • Naitoh Y., Fukata J., Tominaga T., Nakai Y., Tamai S., Mori K., Imura H. Interleukin-6 stimulates the secretion of adrenocorticotropic hormone in conscious freely-moving rats. Biochem. Biophys. Res. Commun. 1988; 155: 1459–1463
  • Uehara A., Gottschall P. E., Dahl R. R., Arimura A. Interleukin-1 stimulates ACTH release by an indirect action which requires endogenous corticotropin releasing factor. Endocrinology 1987; 121: 1580–1582
  • Berkenbosch F., Van Oers J., Del Rey A., Tilders F., Besedovsky H. Corticotropin-releasing factor producing neurons in the rat activated by interleukin-1. Science 1987; 238: 524–526
  • Sapolsky R., Rivier C., Yamamoto G., Plotsky P., Vale W. Interleukin-1 stimulates the secretion of hypothalamic corticotropin releasing factor. Science 1987; 238: 522–524
  • Suda T., Tozawa F., Ushiyama T., Sumitomo T., Yamada M., Demura H. Interleukin-1 stimulates corticotropin-releasing factor gene expression in rat hypothalamus. Endocrinology 1990; 126: 1223–1228
  • Dunn A. J. Systemic interleukin-1 administration stimulates hypothalamic norepinephrine metabolism paralleling the increased plasma corticosterone. Life Sci. 1988; 43: 429–435
  • Dunn A. J. Interleukin-1 as a stimulator of hormone secretion. Prog. Neuroendocr. Immunol. 1990; 3: 26–34
  • Matta S. G., Singh J., Newton R., Sharp B. M. The adrenocorticotropin response to interleukin-1 beta instilled into the rat median eminence depends on the local release of catecholamines. Endocrinology 1990; 127: 2175–2182
  • Rivier C., Vale W., Brown M. In the rat, interleukin-1 alpha and beta stimulate adrenocorticotropin and catecholamine release. Endocrinology 1989; 125: 3096–3102
  • Bernardini R., Calogero A. E., Mauceri G., Chrousos G. P. Rat hypothalamic corticotropin-releasing hormone secretion in vitro, is stimulated by interleukin-1 in an eicosanoid-dependent manner. Life Sci. 1990; 47: 1601–1607
  • Gold P. W., Chrousos G. P. Arachidonic acid metabolites modulate rat hypothalamic corticotropin-releasing hormone secretion in vitro. Neuroendocrinology 1989; 50: 708–715
  • Navarra P., Tsagarakis S., Faria M. S., Rees L. H., Besser G. M., Grossman A. B. Interleukin-1 and -6 stimulate the release of corticotropin-releasing hormone-41 from rat hypothalamus in vitro, via the eicosanoid cyclooxygenase pathway. Endocrinology 1990; 128: 37–44
  • Niimi M., Sato M., Wada Y., Takahara J., Kawanishi K. Effect of central and continuous intravenous injection of interleukin-1 beta on brain c-fos expression in the rat: involvement of prostaglandins. Neuroimmunomodulation 1996; 3: 87–92
  • Rivier C. Blockade of nitric oxide formation augments adrenocorticotropin released by blood-borne interleukin-1 beta: role of vasopressin, prostaglandins, and alpha 1-adrenergic receptors. Endocrinology 1995; 136: 3597–3603
  • Linthorst A. C.E., Flachskamm C., Holsboer F., Reul J. M.H.M. Local administration of recombinant human interleukin-1 in the rat hippocampus increases serotonergic neurotransmission, hypothalamic-pituitary-adrenocortical axis activity, and body temperature. Endocrinology 1994; 135: 520–532
  • Arévalo R., Sanchez F., Alonso J. R., Carretero J., Vazquez R., Aijon J. NADPH-diaphorase activity in the hypothalamic magnocellular neurosecretory nuclei of the rat. Brain Res. Bull. 1992; 28: 599–603
  • Rivier C., Shen G. In the rat, endogenous nitric oxide modulates the response of the hypothalamic-pituitary-adrenal axis to interleukin-1 beta, vasopressin and oxytocin. J. Neurosci. 1994; 14: 1985–1993
  • Turnbull A. V., Rivier C. Corticotropin-releasing factor, vasopressin, and prostaglandins mediate and nitric oxide restrains, the hypothalamic-pituitary-adrenal response to acute local inflammation in the rat. Endocrinology 1996; 137: 455–463
  • Rivest S., Rivier C. Interleukin-1beta inhibits the endogenous expression of the early gene c-fos located within the nucleus of LHRH neurons and interferes with hypothalamic LHRH release during proestrus in the rat. Brain Res. 1993; 613: 132–142
  • Rivier C., Vale W. Cytokines act within the brain to inhibit LH secretion and ovulation in the rat. Endocrinology 1990; 127: 849–856
  • Rivier C., Vale W. In the rat, interleukin-1 alpha acts at the level of the brain and the gonads to interfere with gonadotropin and sex steroid secretion. Endocrinology 1989; 124: 2105–2109
  • Rivest S., Lee S., Attardi B., Rivier C. The chronic intracerebroventricular infusion of interleukin-1beta alters the activity of the hypothalamic-pituitary-gonadal axis of cycling rats. 1. Effect on LHRH and gonadotropin biosynthesis and secretion. Endocrinology 1993; 133: 2424–2430
  • Rivest S., Rivier C. Centrally injected interleukin-1beta inhibits the hypothalamic LHRH secretion and circulating LH levels via prostaglandins in rats. J. Neuroendocrinal. 1993; 5: 445–450
  • Bonavera J. J., Kalra S. P., Kalra P. S. Mode of action of interleukin-1 in suppression of pituitary LH release in castrated male rats. Brain Res. 1993; 612: 1–8
  • Rettori V., Gimeno M. F., Karara A., Gonzalez M. C., McCann S. M. Interleukin-1 alpha inhibits prostaglandins E2 release to suppress pulsatile release of luteinizing hormone but not follicle-stimulating hormone. Proc. Natl. Acad. Sci. USA 1991; 88: 2763–2767
  • Bonavera J. J., Kalra S. P., Kalra P. S. Evidence that luteinizing hormone suppression in response to inhibitory neuropeptides, beta-endorphin, interleukin-1beta and neuropeptide-K, may involve excitatory amino acids. Endocrinology 1993; 133: 178–182
  • Rivest S., Rivier C. Influence of te paraventricular nucleus of the hypothalamus in the alteration of neuroendocrine functions induced by intermittent footshock or interleukin. Endocrinology 1991; 129: 2049–2057
  • Rivier C., Rivier J., Vale W. Stress-induced inhibition of reproductive functions: Role of endogenous corticotropin-releasing factor. Science 1986; 231: 607–609
  • Hales D. B., Xiong Y., Tur-Kaspa I. The role of cytokines in the regulation of Leydig cell P450cl7 gene expression. J. Steroid. Biochem. Mol. Biol. 1992; 43: 907–914
  • Xiong Y., Hales D. B. Expression, regulation, and production of tumor necrosis factor-alpha in mouse testicular interstitial macrophages in vitro. Endocrinology 1993; 133: 2568–2573, 1993
  • Tortorella C., Malendowicz L. K., Andreis P. G., Markowska A., Neri G., Mazzochi G., Nussdorfer G. G. Effects of interleukin-1beta on steroidogenesis in Leydig cells of the rat testis: in vivo, and in vitro, studies. Biomed Res. 1993; 14: 209–215
  • Best C. L., Pudney J., Anderson D. J., Hill J. A. Modulation of human granulosa cell steroid production in vitro, by tumor necrosis factor alpha: implications of white blood cells in culture. Obstet. Gynecol. 1994; 84: 121–127
  • Renner U., Newton C. J., Pagotto U., Sauer J., Arzt E., Stalla G. K. Involvement of interleukin-1 and interleukin 1 receptor antagonist in rat pituitary cell growth regulation. Endocrinology 1995; 136: 3186–3193
  • Arzt E., Sauer J., Buric R., Stalla J., Renner U., Stalla G. K. Characterization of interleukin-2 (IL-2) receptor expression and action of IL-2 and IL-6 on normal anterior pituitary cell growth. Endocrine. 1995; 3: 113–119
  • Kunert-Radek J., Radek A., Stepien H. Interleukin-2 stimulates cell proliferation of the growth hormone producing human pituitary adenoma in vitro. Biomed. Lett. 1994; 49: 259–264
  • Sawada T., Koike K., Kanda Y., Ikegami H., Jikihara T., Maeda T., Osako Y., Hirota K., Miyake A. Interleukin-6 stimulates cell proliferation of rat pituitary clonal cell lines in vitro. J. Endocrinol. Invest. 1995; 18: 83–90
  • Stepien H., Zerek-Melen G., Mucha S., Fryczak J. Interleukin-1beta stimulates cell proliferation in the intermediate lobe of the rat pituitary gland. J. Endocrinol. 1994; 140: 337–341
  • Hanley N., Williams B. C., Nicol M., Bird I. M., Walke S. W. Interleukin-1beta stimulates growth of adrenocortical cells in primary culture. J. Mol. Endocrinol 1992; 8: 131–136
  • Mine M., Tramontano D., Chin W. W., Ingbar S. H. Interleukin-1 stimulates thyroid cell growth and increase the concentration of the c-myc proto-oncogen mRNA in thyroid follicular cells in culture. Endocrinology 1987; 120: 1212–1214
  • Reichlin S. Neuroendocrine-immune interactions. N. Eng. J. Med. 1993; 329: 1246–1253
  • Munck A., Guyre P. M., Holbrook N. J. Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr. Rev. 1984; 5: 25–44
  • Sternberg E. M., Hill J. M., Chrousos G. P. Inflammatory mediator-induced hypothalamic-pituitary-adrenal axis activation is defective in streptococcal cell wall arthritis-susceptible Lewis rats. Proc. Natl. Acad. Sci. USA 1989; 86: 2374–2378
  • Sternberg E. M., Young W. S.I, Bernardini R. A central nervous system defect in biosynthesis of corticotropin-releasing hormone is associated with susceptibility to streptococcal cell wall-induced arthritis in Lewis rats. Proc. Natl. Acad. Sci. USA 1989; 86: 4771–4775
  • Chikanza I. C., Petrou P., Kingsley G., Chrousos G., Panayi G. S. Defective hypothalamic response to immune and inflammatory stimuli in patients with rheumatoid arthritis. Arthritis. Rheum. 1992; 35: 1281–1288

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.