739
Views
3
CrossRef citations to date
0
Altmetric
Laboratory Study

Expression of Proinflammatory Factors in Renal Cortex Induced by Methylmalonic Acid

, , , , , & show all
Pages 885-891 | Received 30 Aug 2011, Accepted 10 Apr 2012, Published online: 14 May 2012

REFERENCES

  • Fenton WA, Gravel RA, Rosenblatt DS. Disorders of propionate and methylmalonate metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The Metabolic and Molecular Bases of Inherited Disease. 8th ed. New York: McGraw-Hill; 2001:2165–2193.
  • Baumgarter ER, Viardot C. Long-term follow-up of 77 patients with isolated methylmalonic aciduria. J Inherit Metab Dis. 1995;18:138–142.
  • Hörster F, Hoffmann GF. Pathophysiology, diagnosis, and treatment of methylmalonic aciduria—recent advances and new challenges. Pediatr Nephrol. 2004;19:1071–1074.
  • Rutledge SL, Geraghty M, Mroczek E, . Tubulointerstitial nephritis in methylmalonic acidemia. Pediatr Nephrol. 1993;7:81–82.
  • Zoja C, Donadelli R, Colleoni S, . Protein overload stimulates RANTES production by proximal tubular cells depending on NF-kappaB activation. Kidney Int. 1998;53:1608–1615.
  • Remuzzi G, Perna A, Benigni A. Proteins abnormally filtered throughout glomerular capillary have an intrinsic renal toxicity. Contrib Nephrol. 1996;118:164–172.
  • Takase O, Hirahashi J, Takayanagi A, . Gene transfer of truncated IkappaBalpha prevents tubulointerstitial injury. Kidney Int. 2003;63:501–513.
  • Rodríguez-Iturbe B, García G. The role of tubulointerstitial inflammation in the progression of chronic renal failure. Nephron Clin Pract. 2010;116:c81–c88.
  • de Keyzer Y, Valayannopoulos V, Benoist JF, . Multiple OXPHOS deficiency in the liver, kidney, heart, and skeletal muscle of patients with methylmalonic aciduria and propionic aciduria. Pediatr Res. 2009;66:91–95.
  • Crujeiras AB, Parra D, Goyenechea E, . Sirtuin gene expression in human mononuclear cells is modulated by caloric restriction. Eur J Clin Invest. 2008;38:672–678.
  • DiPetrillo K, Gesek FA. Pentoxifylline ameliorates renal tumor necrosis factor expression, sodium retention, and renal hypertrophy in diabetic rats. Am J Nephrol. 2004;24:352–359.
  • Hoie EB, McGuire TR, Leuschen PM, Zach TL. Pentoxifylline inhibits tumor necrosis factor-alpha induced synthesis of complement component C3 in human endothelial cells. Biol Pharm Bull. 2004;27:1670–1673.
  • Wajner M, Brites EC, Dutra JC, . Diminished concentrations of ganglioside N-acetylneuraminic acid (G-NeuAc) in cerebellum of young rats receiving chronic administration of methylmalonic acid. J Neurol Sci. 1988;85:233–238.
  • Prieto JA, Andrade F, Aldámiz-Echevarría L, . Análisis de ácidos orgánicos en orina mediante cromatografía de gases-espectrometría de masas. Química Clín. 2007;26:66–72.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408.
  • Kölker S, Schwab M, Hörster F, . Methylmalonic acid, a biochemical hallmark of methylmalonic acidurias but no inhibitor of mitochondrial respiratory chain. J Biol Chem. 2003;278:47388–47393.
  • Mirandola SR, Melo DR, Schuck PF, . Methylmalonate inhibits succinate-supported oxygen consumption by interfering with mitochondrial succinate uptake. J Inherit Metab Dis. 2008;31:44–54.
  • D’Angio CT, Dillon MJ, Leonard JV. Renal tubular dysfunction in methylmalonic acidemia. Eur J Pediatr. 1991;150:259–263.
  • Chandler RJ, Zerfas PM, Shanske S, . Mitochondrial dysfunction in mut methylmalonic acidemia. FASEB J. 2009;23:1252–1261.
  • Risdon RA, Sloper JC, de Wardener HE. Relationship between renal function and histological changes found in renal-biopsy specimens from patients with persistent glomerular nephritis. Lancet. 1968;2:363–366.
  • Morath MA, Okun JG, Müller IB, . Neurodegeneration and chronic renal failure in methylmalonic aciduria—A pathophysiological approach. J Inherit Metab Dis. 2008;31:35–43.
  • Fernandes CG, Borges CG, Seminotti B, . Experimental evidence that methylmalonic acid provokes oxidative damage and compromises antioxidant defenses in nerve terminal and striatum of young rats. Cell Mol Neurobiol. 2011;31(5):775–785.
  • Becker GJ, Hewitson TD. The role of tubulointerstitial injury in chronic renal failure. Curr Opin Nephrol Hypertens. 2000;9:133–138.
  • Miana M, de Las Heras N, Rodriguez C, . Effect of eplerenone on hypertension-associated renal damage in rats: Potential role of peroxisome proliferator activated receptor gamma (PPAR-γ). J Physiol Pharmacol. 2001;62:87–94.
  • Böttinger EP, Bitzer M. TGF-beta signaling in renal disease. J Am Soc Nephrol. 2002;13:2600–2610.
  • Buemi M, Allegra A, Rotig A, . Renal failure from mitochondrial cytopathies. Nephron. 1997;76:249–253.
  • Sauer SW, Opp S, Haarmann A, . Long-term exposure of human proximal tubule cells to hydroxycobalamin[c-lactam] as a possible model to study renal disease in methylmalonic acidurias. J Inherit Metab Dis. 2009;32:720–727.
  • Remuzzi G, Ruggenenti P, Benigni A. Understanding the nature of renal disease progression. Kidney Int. 1997;51:2–15.
  • Taal MW, Brenner BM. Renoprotective benefits of RAS inhibition: From ACEI to angiotensin II antagonists. Kidney Int. 2000;57:1803–1817.
  • Ha TS, Lee JS, Hong EJ. Delay of renal progression in methylmalonic acidemia using angiotensin II inhibition: A case report. J Nephrol. 2008;21:793–796.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.